
CHAPTER 40

Area

The two main themes of this course have been di�erentiation and its
opposite process, integration. Beginning in this chapter, and contin-

uing through the remainder of the text, we explore a startling connection
between these two processes. It is related to the area under the graph of a
function y= f (x) and between two x values a and b

y= f (x)

A

ba

This connection is called the Fundamental Theorem of Calculus, and is
covered in Chapter 42. As we will see, one consequence of this theorem is a
simple formula for the area under a curve in terms an antiderivative of f .

In preparation for this, we now consider the problem of finding the area
under a function. Our investigations will lead to a major definition called
the definite integral, which will be the subject of Chapter 41. Then we will
be ready for the fundamental theorem of calculus, in Chapter 42.

Since the region under a curve is unlikely to be a geometric shape that
has a formula for its area, we will instead express its area by approximating
it with smaller shapes whose area we can compute, namely rectangles.

y= f (x)

ba
1 2 3 · · · n

y= f (x)

ba

· · ·1 32 n

y= f (x)

ba

Our approach will be to approximate the region with some number n of
rectangular strips, reaching from the x-axis to the curve, as suggested in
the diagrams above. Then the area A we seek is approximated by the sum
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of the areas (base£height) of the n rectangles. The more rectangles we use,
the better they fit the contour of the curve, and

A = lim
n!1

°
sum of the areas of n rectangles

¢

If this limit turns out to be one that we can compute, then we have a formula
for A. Even if the limit is not one that can be easily found, this theoretical
approach to A will still turn out to be highly productive.

However, this approach involves sums with very many terms, because the
number of rectangles approaches infinity. Before making further progress
with this approach we need a notation that e�ectively handles such large
sums. That notation is called sigma notation.

40.1 Sigma Notation
In mathematics, the upper case greek letter ß (sigma) is commonly used to
indicate a sum. This is done as follows.

Sigma Notation
If f is a function, n is a positive integer, and k is a variable, then

nX

k=1
f (k)= f (1)+ f (2)+ f (3)+ f (4)+·· ·+ f (n).

We read
nP

k=1
f (k) as “sum of f (k) from 1 to n”. It means to add up the terms

f (1)+ f (2)+ f (3)+ f (4)+·· · , stopping when you get to the nth term f (n).

For example, Suppose f is the function defined as f (k)= k2 +1. Then:

2X

k=1
(k2 +1) = (12 +1)+ (22 +1) = 7

3X

k=1
(k2 +1) = (12 +1)+ (22 +1)+ (32 +1) = 17

4X

k=1
(k2 +1) = (12 +1)+ (22 +1)+ (32 +1)+ (42 +1) = 34

5X

k=1
(k2 +1) = (12 +1)+ (22 +1)+ (32 +1)+ (42 +1)+ (52 +1) = 60

For another example, let f (k)= k be the identity function. Then

10X

k=1
k = 1+2+3+4+5+6+7+8+9+10 = 55.
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Sometimes you will encounter a sum like
20P

k=1
3. For something like this,

the 3 should be interpreted as the constant function f (k)= 3, so

20X

k=1
3 = 3+3+3+3+3+·· ·+3| {z }

20 times
= 60.

Thus, in general,
nP

k=1
c = nc, which can be regarded as a formula for the sum.

For example,
1000P
k=1

23= 23 ·1000= 23000.

Another basic sum that has a simple formula is
nP

k=1
k = 1+2+3+4+·· ·+n.

Interpret this sum as the area of a stair-step shaped region n units wide by
n units high as shown below, left. (The first column of squares has area 1,
the second has area 2, and so on.) The area of this region is

nP
k=1

k.

n

n

n

n n+1

Put together two copies of this region and you get an n£ (n+1) rectangle
(above, right) with area n(n+1). Therefore

nP
k=1

k = n(n+1)
2 . For example,

10X

k=1
k = 10(10+1)

2
= 110

2
= 55,

the same result we got by regular addition on the previous page.
Here is a list of the above sum formulas, and two others.

Fact 40.1 (Sum Formulas)

1.
nX

k=1
c = c+ c+ c+·· ·+ c = nc

2.
nX

k=1
k = 1+2+3+·· ·+n = n(n+1)

2

3.
nX

k=1
k2 = 12 +22 +32 +·· ·+n2 = n(n+1)(2n+1)

6
= 2n3 +3n2 +n

6

4.
nX

k=1
k3 = 13 +23 +33 +·· ·+n3 = n2(n+1)2

4
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We will not concern ourselves here with verifying the above formulas 3
and 4. In fact, these formulas will be used only in this section, and do not
play a major role in Calculus I.

More important are the following three properties of sums, which are
mere restatements of the associative and distributive properties of addition.

Fact 40.2 (Sum Rules)

1.
nX

k=1

≥
f (k)+ g(k)

¥
=

nX

k=1
f (k) +

nX

k=1
g(k)

2.
nX

k=1

≥
f (k)° g(k)

¥
=

nX

k=1
f (k) °

nX

k=1
g(k)

3.
nX

k=1
c f (k) = c ·

nX

k=1
f (k)

Many sums follow quickly and easily from these rules and formulas.
Example 40.1

100X

k=1

µ
1
3

k2 +4k°2
∂

=
100X

k=1

1
3

k2 +
100X

k=1
4k °

100X

k=1
2 (Rules 1,2)

= 1
3

100X

k=1
k2 + 4

100X

k=1
k °

100X

k=1
2 (Rule 3)

= 1
3
· 100(100+1)(2 ·100+1)

6
+4 · 100(100+1)

2
°100 ·2

(Formulas 3, 2, 1)

= 2030100
18

+ 40400
2

°200

= 338350
3

+20200°200

= 338350
3

+ 60600
3

° 600
3

= 398350
3

Two final remarks about sigma notation are in order. First, the starting
value of k need not be 1. It could be any integer up to n. For example,

10X

k=5
f (k)= f (5)+ f (6)+ f (7)+ f (8)+ f (9)+ f (10).

(But note that Formulas 1, 2 and 3 require the initial value k = 1.) Second,
variables other than k are admissible. For example,

nP
k=1

f (k)=
nP

i=1
f (i). The

variables k or i in the sums are sometimes called dummy variables because
the sum’s value does not depend on which variable is used.
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40.2 Area
Now we will use sigma notation to help find area under a curve. We will
illustrate this with an example. Our approach will then lead to a general
formula for area under the graph of a function.
Example 40.2 Our problem here
is to find the area A of the region un-
der the graph of f (x) = x2, between
x = 0 and x = 2 (shown shaded on the
right).

To do this we first fix a positive
integer n. Next we will cover this re-
gion with n rectangular strips.

To do this, divide the interval
[0,2] (which has length 2) into n
pieces (called subintervals) of equal
length. Call this length ¢x, so

¢x = 2
n

.

The endpoints of the subintervals are
0,

2
n

, 2
2
n

, 3
2
n

, . . . , n
2
n
= 2,

as indicated on the right.
Now let each subinterval be the

base of a rectangle whose upper right
corner touches the graph of f (x). The
kth rectangle (for 1∑k∑n) has height
f
°
k 2

n
¢

and base ¢x, so its area is
height £ base = f

°
k 2

n
¢
¢x.

The area A is approximately the sum
of the areas of these n rectangles:

A º
nX

k=1
f
µ
k

2
n

∂
¢x.

x

y

0 2

f (x)= x2

A

x

y

0 2

f (x)= x2¢x = 2
n

2
n 2 2

n 3 2
n 4 2

n · · · k 2
n · · · n 2

n

x

y

0 2

f (x)= x2

A

¢x = 2
n

2
n 2 2

n 3 2
n 4 2

n
· · ·

k 2
n

· · ·
n 2

n

1 2 3 4

k

n

Let’s now work out this sum. Using the fact that f (x)= x2, ¢x = 2
n , along

with Rule 3 and Formula 3 from the previous section, we get

A º
nX

k=1
f
µ
k

2
n

∂
¢x =

nX

k=1

µ
k

2
n

∂2 2
n

=
nX

k=1

8
n3 k2 = 8

n3

nX

k=1
k2 = 8

n3
2n3 +3n2 +n

6

= 4
3

2n3 +3n2 +n
n3 .
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To summarize what we’ve done so far, the area A we seek is approximated
by the sum of the areas of n rectangles, and this sum is

A º
nX

k=1
f
µ
k

2
n

∂
¢x = 4

3
2n3 +3n2 +n

n3 . (§)

Notice that this value depends on n, the number of rectangles used. Actually,
it is slightly larger than A, because the upper-left corners of the rectangles
extend outside of the region whose area we want to measure.

To get a better approximation just increase the number n of rectangles,
for the more rectangles we use, the better they fit the contour of the curve.
The pictures below show 20 and 40 rectangles, respectively.

x

y

0 2

f (x)= x2

n = 20

¢x = 2
n

x

y

0 2

f (x)= x2

n = 40

¢x = 2
n

So to get the area A exactly, all we have to do is let the number n of
rectangles in (§) approach infinity. Thus:

A = lim
n!1

nX

k=1
f
µ
k

2
n

∂
¢x = lim

n!1
4
3

2n3 +3n2 +n
n3

= 4
3
·2 = 8

3
.

(The limit above has indeterminate form 1
1 , and is found either with

L’Hôpital’s rule or with techniques from Chapter 13.)
We have now computed the area

under the graph of f (x) as a limit of
the areas of rectangles.
Answer: The area under the graph
of f (x) = x2 and between x = 0 and
x = 2 is 8

3 square units.
x

y

8
3

0 2

f (x)= x2

Following the approach of Example 40.2, we now develop a formula for
area under a curve.
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Take a function f (x) that is positive on an interval [a,b]. Our goal is a
formula for the area A of the region shown below.

x

y

a b

y= f (x)

A

As in Example 40.2, the first step is to cover this region with n rectangles.
So start by dividing [a,b] into n subintervals of equal length. As [a,b] has
length b°a, each subinterval has length

¢x = b°a
n

.

Label the endpoints of the subintervals x0, x1, x2, . . . , xn, where

xk = a+k¢x.

(So x0 = a+0·¢x = a and xn = a+n·¢x = a+n b°a
n = b.) Thus the subintervals

are [x0, x1], [x1, x2], [x2, x3], . . ., [xn°1, xn], and the kth subinterval is [xk°1, xk].

x

y

a b

y= f (x)
¢x

x0 x1 x2 x3 x4 · · · xk · · · xn

Next, let each subinterval [xk°1, xk] be the base of a rectangle whose
height is f (xk). Then the upper right corner of the kth rectangle is on the
graph of f (x), and the kth rectangle (shown shaded above) has area f (xk)¢x.

Thus A is approximately equal to the sum of the areas of the n rectangles:

A º
nX

k=1
f (xk)¢x.

To get A exactly, we let the number n of rectangles approach infinity:

A = lim
n!1

nX

k=1
f (xk)¢x.

This is our formula for area under a curve.
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Fact 40.3 (Area under a curve)
If a function f (x) is continuous and
nonnegative on an interval [a,b],
then the area of the region below
its graph and above this interval is

A = lim
n!1

nX

k=1
f (xk)¢x

where ¢x = b°a
n

and xk = a+k¢x.

x

y

a b

y= f (x)

A

Example 40.3 Find the area below y= f (x)= 1
2 x+1 and above [2,4].

Solution This problem is inten-
tionally simple, because f (x)= 1

2 x+1
is a linear function. The region in
question is the union of a 2£2 square
and a triangle of base 2 and height 1.
Therefore its area is A = 2·2+ 1

22·1= 5
square units.

x

y

2 4

y= f (x)= 1
2 x+1

A

3

2

But let’s test Fact 40.3 by using it to get the same answer. To set up
the area formula, we need to find ¢x and xk. In this problem the interval is
[a,b]= [2,4] so ¢x = (4°2)/n = 2/n. Also xk = a+k¢x = 2+k2/n. Thus

A = lim
n!1

nX

k=1
f (xk)¢x = lim

n!1

nX

k=1
f
µ
2+ 2k

n

∂
2
n

= lim
n!1

nX

k=1

µ
1
2

µ
2+ 2k

n

∂
+1

∂
2
n

( f (x)= 1
2 x+1)

= lim
n!1

nX

k=1

µ
4
n
+ 2k

n2

∂

= lim
n!1

√
nX

k=1

4
n

+
nX

k=1

2k
n2

!

(Fact 40.2 (2))

= lim
n!1

√
1
n

nX

k=1
4 + 2

n2

nX

k=1
k

!

(Fact 40.2 (3))

= lim
n!1

µ
1
n

4n + 2
n2

n(n+1)
2

∂
(Fact 40.1 (1 & 2))

= lim
n!1

µ
4 + n2 +n

n2

∂
= 4+1 = 5 square units.
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Although Fact 40.3 gives area exactly, we will rarely if ever use it. One
reason is that the limit can be di�cult or cumbersome. But a more important
reason is that the fundamental theorem of calculus in Chapter 42 will
provide a shortcut method of computing A by means of antiderivatives of f .
In this sense the formula for A (Fact 40.3) is akin to the definition of the
derivative, f 0(x)= lim

h!0
f (x+h)° f (x)

h . This limit was important because it gave
slope. But then we found ways to compute f 0(x) without a limit. The same
is true for area.

The real importance of Fact 40.3 is that it motivates the idea of a definite

integral, which is of major importance in calculus. We will define the definite
integral in the next chapter.

In short, our area formula (Fact 40.3) is of more theoretical than practical
value. Consequently it is not vitally important to compute area using it,
as we did in this chapter. However, doing an exercise or two can help drive
home the important ideas that will come to bear in the next two chapters.

Exercises for Chapter 40
In Exercises 1–8, use this chapter’s sum formulas and rules to find the sums.

1.
100X

k=1
3 2.

100X

k=1
(3+k) 3.

500X

k=1
k2 4.

10X

k=1
k3

5.
5X

k=1
(3+2k) 6.

40X

k=1
(1+k+k2) 7.

100X

k=1
(2k2 °4) 8.

100X

k=1
(k2 +2)

9. Consider the region contained under the graph of f (x)= x+1 between x = 1 and
x = 2. Since the graph of f is a straight line, you can compute the area of this
region by dividing it into a rectangle and a triangle. Do so. Then arrive at the
same answer by using Fact 40.3.

10. Use Fact 40.3 to find the area of the region contained under the graph of f (x)=
x2 +1 and between x = 1 and x = 3.
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Exercise Solutions for Chapter 40

1.
100X

k=1
3= 100 ·3= 300 (By Fact 40.1 (1))

3.
500X

k=1
k2 = 500(500+1)(2 ·500+1)

6
= 500 ·501 ·1001

6
= 41,791,750 (By Fact 40.1 (3))

5.
5X

k=1
(3+2k) =

5X

k=1
3+

5X

k=1
2k =

5X

k=1
3+2

5X

k=1
k = 5 ·3+2

5(5+1)
2

= 45

7.
100X

k=1
(2k2°4)=

100X

k=1
2k2 °

100X

k=1
4= 2

100X

k=1
k2°100 ·4= 2

100(100+1)(2·100+1)
6

°400= 676300

9. Consider the region contained under the graph of f (x)= x+1 between x = 1 and
x = 2. Since the graph of f is a straight line, you can compute the area of this
region by dividing it into a rectangle and a triangle. Do so. Then arrive at the
same answer by using Fact 40.3.
This region can be divided into a 1£2
rectangle and a triangle with base 1
and height 1, as shown on the left.
Thus its area is 1 ·2+ 1

2 ·1 ·1= 5/2 square
units.

In the area formula, ¢x = (2°1)/n = 1/n
and xk = 1+k¢x = 1+k/n. Then:

x

y

21

y= f (x)= x+1

A

3

2

A = lim
n!1

nX

k=1
f (xk)¢x = lim

n!1

nX

k=1
f
µ
1+ k

n

∂
1
n

= lim
n!1

nX

k=1

µ
1+ k

n
+1

∂
1
n

= lim
n!1

nX

k=1

µ
2
n
+ k

n2

∂
= lim

n!1

√
nX

k=1

2
n
+

nX

k=1

k
n2

!

= lim
n!1

√

n
2
n
+ 1

n2

nX

k=1
k

!

= lim
n!1

µ
2+ 1

n2
n(n°1)

2

∂
= lim

n!1

µ
2+ 1

2
n2 °n

n2

∂
= 2+ 1

2
·1 = 5

2
.


