
CHAPTER 24

Derivatives of Inverse Functions and Logarithms

We know that d

dx

£
e

x

§
= e

x. But what about derivatives of exponential
function with bases other than e? In other words, what is d

dx

£
a

x

§
?

And what about d

dx

£
ln(x)

§
and d

dx

£
log

a

(x)

§
? The main goal of this chapter is

to answer these questions and thus expand our list of derivative rules.
Let’s start with d

dx

£
a

x

§
. Since ln(x) is the inverse of e

x, we know a = e

ln(a).
We can thus convert the power a

x to a power of e:

a

x =
≥
e

ln(a)

¥
x

= e

ln(a)x

.

With this, we can get the derivative of a

x with the chain rule:

d

dx

h
a

x

i
= d

dx

h
e

ln(a)x

i
= e

ln(a)x

d

dx

h
ln(a)x

i

| {z }
chain rule

= e

ln(a)x

ln(a) = a

x

ln(a).

So the derivative of a

x is just a

x times the constant ln(a). This is a new rule.

Rule 16 d

dx

h
a

x

i
= ln(a)a

x

For example, d

dx

h
10

x

i
= ln(10)10

x º 2.302 ·10

x. Also d

dx

h
2

x

i
= ln(2)2

x º

0.693 · 2x. Notice how special the base e is: d

dx

h
e

x

i
= ln(e)e

x = 1 · ex = e

x.
The base a = e is the only base for which the derivative of a

x is 1 times a

x.
Next we will get a rule for d

dx

£
ln(x)

§
. Our strategy will be to use the fact

that ln(x) is the inverse of e

x, that is,

if f (x)= e

x, then f

°1

(x)= ln(x).

Our plan is to first develop a general rule for d

dx

£
f

°1

(x)

§
and then use it to

get d

dx

£
ln(x)

§
. (See Chapter 4 If you need to review inverses.)
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Thus our immediate question is: What is d

dx

h
f

°1

(x)

i
?

To answer this, think about the relation between f and its inverse f

°1:

f

°
f

°1

(x)

¢
= x.

The two sides of this equation are equal functions, so if we di�erentiate
both sides the derivatives will be equal:

d

dx

h
f

°
f

°1

(x)

¢i
= d

dx

h
x

i

The right-hand side of this equation is 1. The left-hand side is the derivative
of a composition, so we can apply the chain rule to it:

f

0 °
f

°1

(x)

¢
d

dx

h
f

°1

(x)

i
= 1

In applying the chain rule we multiplied f

0 °
f

°1

(x)

¢
by d

dx

£
f

°1

(x)

§
. We stopped

there because we don’t know what d

dx

£
f

°1

(x)

§
is. But it’s exactly what we

want to find! We can isolate it by dividing the above equation by f

0 °
f

°1

(x)

¢
:

d

dx

h
f

°1

(x)

i
= 1

f

0 °
f

°1

(x)

¢
.

This is our latest rule.

Rule 17 (The inverse rule) If f is a function having a derivative f

0 and an
inverse f

°1, then
d

dx

h
f

°1

(x)

i
= 1

f

0 °
f

°1

(x)

¢ .

To illustrate this rule, suppose f (x)= x

3, which has an inverse f

°1

(x)= 3

p
x.

Let’s find d

dx

£
f

°1

(x)

§
. We know that f

0
(x)= 3x

2, so our new rule gives

d

dx

h
f

°1

(x)

i
= 1

f

0 °
f

°1

(x)

¢ = 1

3

°
f

°1

(x)

¢
2

= 1

3

3

p
x

2

.

Granted, this is not all that impressive, since we can use the power rule to
get the same answer:

d

dx

h
f

°1

(x)

i
= d

dx

h
3

p
x

i
= d

dx

h
x

1

3

i
= 1

3

x

° 2

3 = 1

3x

2

3

= 1

3

3

p
x

2

.
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But the inverse rule can be very useful. We’ll now use it to find the
derivative of ln(x). Say f (x)= e

x, so f

°1

(x)= ln(x). Then

d

dx

h
ln(x)

i
= d

dx

h
f

°1

(x)

i
because ln(x)= f

°1

(x)

= 1

f

0 °
f

°1

(x)

¢ by inverse rule

= 1

f

0°
ln(x)

¢ because f

°1

(x)= ln(x)

= 1

e

ln(x)

becase f

0
(x)= e

x

= 1

x

because e

ln(x) = x.

Thus d

dx

h
ln(x)

i
= 1

x

. Figure 24.1 (left) illustrates this remarkable fact.
It shows the function f (x)= ln(x) along with its derivative f

0
(x)= 1

x

. Notice
how if x is near 0, the tangent to ln(x) at x is very steep, and indeed the
derivative 1

x

is very large. But as x gets bigger, the tangent to ln(x) gets
closer to horizontal (slope 0) while the derivative 1

x

approaches zero.

y= ln(x)

y=1

x

y= ln |x|

y=1

x

Figure 24.1. Left: the graphs of f (x)= ln(x) (black) and f

0
(x)= 1

x

(blue) with
domain (0,1). Right: the graphs of f (x)= ln |x| (black) and f

0
(x)= 1

x

(blue).

Notice however, that the domain of ln(x) is (0,1) but the domain of 1

x

is
(°1,0)[ (0,1). So when we say that the derivative of ln(x) is 1

x

, we really
mean 1

x

with its domain restricted to (0,1). Figure 24.1 (right) shows a
somewhat more complete scenario. It shows the function ln(|x|), which we
will abbreviate as ln |x|. This function has domain (°1,0)[ (0,1), and its
derivative is 1

x

with its usual domain. So our latest rule has two parts.

Rule 18 d

dx

h
ln(x)

i
= 1

x

and d

dx

h
ln

ØØ
x

ØØ
i
= 1

x

.
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Here it is understood that in the first formula the domain of ln(x) and 1

x

is (0,1). In the second formula the domain of ln |x| and 1

x

is all real numbers
except 0. Do not sweat the di�erence between the two versions of this rule –
they say almost the same thing, and the second implies the first. We will
mostly use the first version in parts 3 and 4 of this book, but the second
version becomes particularly useful in Part 5.

At the beginning of this chapter we said our main goals were to find
formulas for d

dx

£
a

x

§
, d

dx

£
ln(x)

§
and d

dx

£
log

a

(x)

§
. We’ve done all but the last

one. For it we will use the change of base formula (Fact 5.1 in Chapter 5,
page 88) which states

log

a

(x)= ln(x)

ln(a)

.

Using this, the constant multiple rule and Rule 18, we get

d

dx

h
log

a

(x)

i
= d

dx

∑
ln(x)

ln(a)

∏
= 1

ln(a)

· d

dx

h
ln(x)

i
= 1

ln(a)

· 1

x

.

With our prior agreement about domains, we get another two-part formula.

Rule 19 d

dx

h
log

a

(x)

i
= 1

x ln(a)

and d

dx

h
log

a

ØØ
x

ØØ
i
= 1

x ln(a)

.

Example 24.1 d

dx

h
log

3

(x)tan(x)

i
= d

dx

h
log

3

(x)

i
tan(x)+ log

3

(x)

d

dx

h
tan(x)

i

(product rule) = 1

x ln(3)

tan(x)+ log

3

(x)sec

2

(x) .

Example 24.2 Find d

dx

hp
5+ x

3 + ln(x)

i
.

This is the derivative of a function to a power, so we can use the generalized
power rule:

d

dx

hp
5+ x

3 + ln(x)

i
= d

dx

h°
5+ x

3 + ln(x)

¢
1/2

i

= 1

2

°
5+ x

3 + ln(x)

¢
1/2°1

d

dx

h
5+ x

3 + ln(x)

i

= 1

2

°
5+ x

3 + ln(x)

¢°1/2

µ
3x

2 + 1

x

∂

=
3x

2 + 1

x

2

p
5+ x

3 + ln(x)

.
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.

Example 24.3 d

dx

h
7+ x+

°
ln(x)

¢
3

i
= 0+1+3

°
ln(x)

¢
2

d

dx

h
ln(x)

i

= 1+3

°
ln(x)

¢
2

1

x

= 1+
3

°
ln(x)

¢
2

x

.

Example 24.4 d

dx

h
ln(x)

x

i
=

d

dx

h
ln(x)

i
· x+ ln(x) · d

dx

h
x

i

x

2

=

1

x

· x+ ln(x) ·1

x

2

(quotient rule) = 1+ ln(x)

x

2

.

Example 24.5 Find the derivative of 10

x

2+3x+2.

The composition y= 10

x

2+3x+2 can be broken up as
(

y= 10

u

u = x

2 +3x+2.

The chain rule then gives d y

dx

= d y

du

· du

dx

= ln(10)10

u · (2x+3+0)

= ln(10)10

x

2+3x+2

(2x+3) .

In Example 24.5 we di�erentiated a function of form a

g(x). Let’s repeat
our steps to get a chain rule generalization for the rule d

dx

£
a

x

§
= ln(a)a

x.

Example 24.6 Find the derivative of a

g(x).

The composition y= a

g(x) can be broken up as
(

y= a

u

u = g(x).

The chain rule then gives d y

dx

= d y

du

· du

dx

= ln(a)a

u · g

0
(x)

= ln(a)a

g(x)

g

0
(x) .

This examples shws d

dx

£
a

g(x)

§
= ln(a)a

g(x)

g

0
(x), a companion to the rule

d

dx

£
e

g(x)

§
= e

g(x)

g

0
(x). We will summarize these and chain rule generalizations

of the other rules from this chapter on the bottom of the next page.
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Example 24.7 Find the derivative of y= ln

ØØ
sin(x)

ØØ.

This is a composition, and the function can be broken up as
(

y= ln |u|
u = sin(x)

The chain rule gives d y

dx

= d y

du

du

dx

= 1

u

cos(x) = 1

sin(x)

cos(x) = cos(x)

sin(x)

.

Example 24.7 illustrates a common pattern, which is to di�erentiate a
function of from ln

ØØ
g(x)

ØØ or ln

°
g(x)

¢
. Let’s redo the example in this setting.

Example 24.8 Find the derivative of y= ln

ØØ
g(x)

ØØ.

This is a composition, and the function can be broken up as
(

y= ln |u|
u = g(x)

The chain rule gives d y

dx

= d y

du

du

dx

= 1

u

g

0
(x) = 1

g(x)

g

0
(x) = g

0
(x)

g(x)

.

Example 24.8 has shown that

d

dx

h
ln

ØØ
g(x)

ØØ
i

= 1

g(x)

· d

dx

h
g(x)

i
= g

0
(x)

g(x)

.

This is the chain rule generalization of the rule d

dx

£
ln |x|

§
= 1

x

, and it is worth
remembering. It implies d

dx

£
ln

°
g(x)

¢§
= g

0
(x)

g(x)

, and we often us it this way.
(Recall ln

°
g(x)

¢
is not defined when g(x) is negative, so the rule as stated

for ln

ØØ
g(x)

ØØ is more all-encompassing.)
Here is a summary of this chapter’s main rules, along side their chain

rule generalizations. Remember them and internalize them.

Di�erentiation rules for exponential and log functions

Rule Chain rule generalization

d

dx

h
e

x

i
= e

x

d

dx

h
e

g(x)

i
= e

g(x)

g

0
(x)

d

dx

h
a

x

i
= ln(a)a

x

d

dx

h
a

g(x)

i
= ln(a)a

g(x)

g

0
(x)

d

dx

h
ln

ØØ
x

ØØ
i
= 1

x

d

dx

h
ln

ØØ
g(x)

ØØ
i
= g

0
(x)

g(x)

d

dx

h
log

a

ØØ
x

ØØ
i
= 1

x ln(a)

d

dx

h
log

a

ØØ
g(x)

ØØ
i
= g

0
(x)

g(x) ln(a)

We prefer the base e, so you should expect to that the formulas for a

x and
log

a

to play less of a role. (Though in computer science, log

2

is significant!)



283

Example 24.9 Find the derivative of y= ln

ØØ
4x

5 +6x

3 + x+3

ØØ.
We will do this in two di�erent ways. First we will use the chain rule, and
then we will use the formula d

dx

£
ln

ØØ
g(x)

ØØ§= g

0
(x)

g(x)

from the previous page.

Using the chain rule, we first break the function up as
(

y= ln |u|
u = 4x

5 +6x

3 + x+3

The chain rule gives d y

dx

= d y

du

du

dx

= 1

u

°
20x

4 +18x

2 +1

¢

= 1

4x

5+6x

3+x+3

°
20x

4+18x

2+1

¢
= 20x

4 +18x

2 +1

4x

5 +6x

3 + x+3

.

Next, using the formula d

dx

£
ln

ØØ
g(x)

ØØ§ = g

0
(x)

g(x)

, from the previous page, the

answer comes in one step: d

dx

h
ln

ØØ
4x

5 +6x

3 + x+3

ØØ
i
= 20x

4 +18x

2 +1

4x

5 +6x

3 + x+3

.

So using the formula is quicker. But you should soon reach the point
where the above to approaches are equally automatic. Doing the chain rule
in your head is in essence using the formula.

Example 24.10 Find the derivative of y= ln

ØØØtan

≥p
x

2 +3x

¥ØØØ.

This has the form of a composition ln

ØØ
g(x)

ØØ, so we can use either the straight
chain rule or the formula d

dx

£
ln

ØØ
g(x)

ØØ§ = 1

g(x)

g

0
(x) from the previous page.

Let’s try the formula.

d

dx

h
ln

ØØØtan

≥p
x

2+3x

¥ØØØ
i
= 1

tan

≥p
x

2+3x

¥
d

dx

h
tan

≥p
x

2+3x

¥i

= 1

tan

≥p
x

2+3x

¥
sec

2

≥p
x

2+3x

¥
d

dx

hp
x

2 +3x

i

= 1

tan

≥p
x

2+3x

¥
sec

2

≥p
x

2+3x

¥
1

2

°
x

2+3x

¢ 1

2

°1

d

dx

h
x

2+3x

i

= 1

tan

≥p
x

2+3x

¥
sec

2

≥p
x

2+3x

¥
1

2

°
x

2+3x

¢° 1

2

(2x+3)

=
(2x+3)sec

2

≥p
x

2+3x

¥

2tan

≥p
x

2+3x

¥p
x

2+3x
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Exercises for Chapter 24

In exercises 1–20 di�erentiate the given function.

1. ln(x)+ 1

x

+
p

x+3 2. ln

µ
x

2 + 1

x

∂

3. ln(w)

w

4. 1

x

2 + ln(x)

5. ln

°
sin

3

(

x

)

¢
6. ln

°
tan(x)

¢

7. 5+ ln(ºµ)+
p
µ3 8. ln

°
sec

°
x

3

¢¢

9. cos

°
ln(x)

¢
10.

°
sec

°
ln x

¢ ¢
3

11. º2 + ln(5µ)+
p
µ

9 12. ln

°
sec(x

3

)

¢

13. ln(x

2 +1)

p
3x+1 14. sec

°
ln(x

3

)

¢

15. ln

°
xe

x

¢
16. ln

(

x

)

e

x

17. tan

°
ln(x)

¢
+ x 18. ln

°
sin

°
x

3

¢¢

19. ln

µ
1+ 1

x

∂
20. x

3

ln(x)

x

3 +1

21. Find lim

h!0

ln(3+h)° ln(3)

h

22. Find lim

z!3

2

z °8

z°3

Exercise Solutions for Chapter 24

In exercises 1–20 di�erentiate the given function.

1. d

dx

∑
ln(x)+ 1

x

+
p

x+3

∏
= 1

x

° 1

x

2

+ 1

2

p
x

3. d

dw

∑
ln(w)

w

∏
=

1

w

·w° ln(w) ·1
w

2

= 1° ln(w)

w

2

5. d

dx

h
ln

°
sin

3

(

x

)

¢i
= 1

sin

3

(x)

d

dx

h
sin

3

(

x

)

i
= 1

sin

3

(x)

3sin

2

(x)

d

dx

h
sin(x)

i
= 3

cos(x)

sin(x)

7. d

dµ

h
5+ ln(ºµ)+

p
µ3

i
= d

dµ

h
5+ ln(ºµ)+µ3/2

i
= 0+ º

ºµ
+ 3

2

µ1/2 = 1

µ
+ 3

2

p
µ

9. d

dx

h
cos

°
ln(x)

¢i
=°sin

°
ln(x)

¢
1

x

=°
sin

°
ln(x)

¢

x

11. d

dx

h
º2 + ln(5µ)+

p
µ

9

i
= d

dx

h
º2 + ln(5µ)+µ9/2

i
= 0+ 5

5µ
+ 9

2

µ7/2 = 1

µ
+ 9

2

p
µ

7
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13. d

dx

h
ln(x

2 +1)

p
3x+1

i
= d

dx

h
ln(x

2 +1)

ip
3x+1 + ln(x

2 +1)

d

dx

hp
3x+1

i

= 2x

x

2 +1

p
3x+1 + ln(x

2 +1)

3

2

p
3x+1

15. d

dx

h
ln

°
xe

x

¢i
= 1

xe

x

d

dx

h
xe

x

i
= 1

xe

x

°
1 · ex + xe

x

¢
= e

x

(

1+ x

)

xe

x

= 1+ x

x

17. d

dx

h
tan

°
ln(x)

¢
+ x

i
= sec

2

°
ln(x)

¢
1

x

+1=
sec

2

°
ln(x)

¢

x

+1

19. d

dx

∑
ln

µ
1+ 1

x

∂∏
= 1

1+ 1

x

d

dx

∑
1+ 1

x

∏
= 1

1+ 1

x

µ°1

x

2

∂
= °1

x

2 + x

21. Find lim

h!0

ln(3+h)° ln(3)

h

. Solution: Let f (x)= ln(x).

Then lim

h!0

ln(x+h)° ln(x)

h

= f

0
(x)= 1

x

. Thus lim

h!0

ln(3+h)° ln(3)

h

= f

0
(3)= 1

3

.


