Name: \qquad

Directions: Closed book, closed notes, no calculators.

1. (12 points) This problem concerns the equation $x^{2}+x y-y^{2}=1$.
(a) Find y^{\prime}.
(b) Use part (a) to find the slope of the tangent line to the graph of $x^{2}+x y-y^{2}=1$ at the point $(2,3)$.
2. (12 points) The graph of the derivative $f^{\prime}(x)$ of a function f is shown below.
(a) State the critical points of f.
(b) State the interval(s) on which f increases.
(c) State the interval(s) on which f decreases.
(d) State the interval(s) on which f is concave down.

3. (10 points) Is the equation $\int \ln (x) d x=x \ln (x)-x+C$ true or false? Explain.
4. (12 points) You have 200 feet of chain link fence to enclose three rectangular regions, as shown below. Find the dimensions x and y that maximize the enclosed area.

5. (12 points) An object is propelled straight down from atop a 160-foot-high tower at time $t=0$ seconds. At time t seconds its height is $s(t)=160-16 t^{2}-48 t$ feet.
Use algebra and calculus to find the object's velocity on impact with the ground.

6. (21 points) Find the limits.
(a) $\lim _{x \rightarrow 0} \frac{\cos (x)-5 x-1}{2 x}=$
(b) $\lim _{x \rightarrow \infty} x e^{-x}=$
(c) $\lim _{x \rightarrow \infty}(\ln (x)-\ln (x+1))=$
7. (21 points) Find the integrals.
(a) $\int\left(x^{6}+\frac{1}{x}+\frac{1}{x^{3}}\right) d x=$
(b) $\int(x+\sin (x)-1) d x=$
(c) $\int\left(e^{x}+\frac{1}{1+x^{2}}\right) d x=$
