Directions: Closed book, closed notes, no calculators. Put all phones, etc., away. You will need only a pencil or pen.

1. (15 points) Answer the questions about the functions graphed below.
(a) $f^{\prime}(-2)=$
(b) $f^{\prime}(0)=$
(c) $\lim _{x \rightarrow-2} g^{\prime}(x)=$
(d) If $h(x)=f(x) g(x)$, then $h^{\prime}(0)=$
(e) If $h(x)=f(g(x))$, then $h^{\prime}(3)=$

2. (8 points) Find the derivatives of the following functions.
(a) $f(x)=x^{4}-3 x+\pi^{2}$
(b) $f(x)=\sin ^{-1}(x)$
(c) $f(x)=e^{-x}$
(d) $f(x)=\sin (\pi x)$
3. (10 points) Find the equation of the tangent line to the graph of $y=\tan (x)$ at the point where $x=\pi / 4$.
4. (30 points) Find the derivatives.
(a) $\frac{d}{d x}\left[\sqrt{x^{4}+x^{2}+1}\right]=$
(b) $\frac{d}{d x}\left[x^{2} \cos \left(x^{2}\right)\right]=$
(c) $\frac{d}{d x}\left[\frac{e^{x}}{x}\right]=$
(d) $\frac{d}{d x}\left[\frac{1}{\sqrt{3 x+1}}\right]=$
(e) $\frac{d}{d x}\left[\ln \left(\sec \left(e^{x}\right)\right)\right]=$
5. (7 points) $\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln (x)}{h}=$
6. (10 points) Suppose $y=x \ln (x)-x$.
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
(c) $\frac{d^{3} y}{d x^{3}}=$
7. (10 points) Find all x for which the tangent to $f(x)=\frac{x^{2}-6 x+10}{x-3}$ at $(x, f(x))$ has slope 0 .
8. (10 points) A function $f(x)$ is graphed below. Sketch the graph of its derivative $f^{\prime}(x)$.

