Name: \qquad

Directions: Closed book, closed notes, no calculators. Put all phones, etc., away. You will need only a pencil or pen.

1. (10 points) Draw the graph of one function $f(x)$ meeting all of the following conditions.
(a) $\lim _{x \rightarrow 3} f(x)=\infty$
(b) $\lim _{x \rightarrow \infty} f(x)=\infty$
(c) $\lim _{x \rightarrow-\infty} f(x)=2$
(d) f is continuous on $(-\infty,-2) \cup(-2,3) \cup(3, \infty)$.
(e) $f(1)=1$
(f) $f^{\prime}(1)=0$
(g) $f^{\prime}(-1)$ does not exist
(h) $\lim _{x \rightarrow-2^{+}} f(x)=1$

(i) $\lim _{x \rightarrow-2^{-}} f(x)=3$
2. (24 points) Find the limits.
(a) $\lim _{x \rightarrow \infty} \tan ^{-1}(x)=$
(b) $\lim _{x \rightarrow 1 / 2} \sin ^{-1}(x)=$
(c) $\lim _{z \rightarrow 0} \frac{e^{z}-e^{0}}{z-0}=$
(d) $\lim _{x \rightarrow 2} \frac{\frac{4}{x}-1}{x-4}=$
(e) $\lim _{x \rightarrow 4} \frac{\frac{4}{x}-1}{x-4}=$
(f) $\lim _{x \rightarrow \infty} \frac{\frac{4}{x}-1}{x-4}=$
3. (6 points) Use a limit definition of the derivative to find the derivative of $f(x)=\sqrt{x}$.
4. (6 points) Find all x for which the tangent to the graph of $y=\frac{x^{3}}{3}+\frac{x^{2}}{2}-2 x+1$ has slope 10 .
5. (6 points) Suppose it costs $C(x)$ dollars to build a transmitting tower that is x meters high. Suppose it happens that $C^{\prime}(100)=1000$. Explain in simple terms what this means.
6. (35 points) Find the derivatives of these functions. You do not need to simplify your answers.
(a) $f(x)=x^{3}+\pi^{3}$
(b) $f(x)=\frac{4}{\sqrt[3]{x}}$
(c) $f(x)=\cos \left(\frac{x+1}{x-1}\right)$
(d) $f(x)=\ln |x| \cdot \sec (x)$
(e) $f(x)=\left(\sin ^{-1}(x)\right)^{3}$
(f) $f(x)=\frac{1}{x^{2}+1}$
(g) $y=x \ln \left(\sec \left(x^{3}+x\right)\right)$
7. (7 points) Given the equation $y \ln (x)+y^{2}=5 x$, find y^{\prime}.
8. (6 points) A spherical balloon is inflated at a rate of 100π cubic feet per minute. How fast is the radius increasing at the instant the radius is 5 feet?
(A sphere of radius r has volume $V=\frac{4}{3} \pi r^{3}$ cubic units, and surface area $S=4 \pi r^{2}$ square units.)
