1. (35 pts.) Evaluate the following limits. Show steps, as appropriate.
(a) $\lim _{x \rightarrow 0} \frac{\pi \sin (x)}{3 x}=$
(b) $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}=$
(c) $\lim _{x \rightarrow \pi / 3} \frac{\sin (x)}{x}=$
(d) $\lim _{x \rightarrow-\infty} \frac{x^{2}-3 x-10}{x^{2}-8 x+15}=$
(e) $\lim _{x \rightarrow 5} \frac{x^{2}-3 x-10}{x^{2}-8 x+15}=$
(f) $\lim _{x \rightarrow 0} \frac{(x-3) \sin (x)}{2 x^{2}-6 x}=$
(g) $\lim _{h \rightarrow 0} \frac{\sqrt{6+h}-\sqrt{6}}{h}=$
2. (5 pts) Sketch the graph of one function with domain $(-\infty, \infty)$ that meets all the following criteria.
(a) $\lim _{x \rightarrow \infty} f(x)=1$
(b) $\lim _{x \rightarrow-\infty} f(x)=2$
(c) $\lim _{x \rightarrow 4} f(x)=\infty$
(d) $\lim _{x \rightarrow 1^{+}} f(x)=1$
(e) $\lim _{x \rightarrow 1^{-}} f(x)=2$
(f) $\lim _{x \rightarrow-4} f(x)=3$

(g) f is not continuous at $x=-4$.
3. (5 pts.) Find the following limit. Explain your reasoning.

$$
\lim _{z \rightarrow 5} \frac{\ln (z)-\ln (5)}{z-5}=
$$

4. (5 pts.) Suppose $f(x)=\frac{6}{x}$. Use a limit definition of the derivative to find $f^{\prime}(x)$.
5. (30 points) Find the derivatives.
(a) $\frac{d}{d x}\left[\sin ^{-1}(x)\right]=$
(b) $\frac{d}{d x}\left[\sqrt{x^{4}+x^{2}+1}\right]=$
(c) $\frac{d}{d x}\left[x^{2} \cos \left(x^{2}\right)\right]=$
(d) $\frac{d}{d x}\left[\frac{e^{x}}{x}\right]=$
(e) $\frac{d}{d x}\left[\frac{1}{\sqrt{3 x+1}}\right]=$
(f) $\frac{d}{d x}\left[\ln \left(\sec \left(e^{x}\right)\right)\right]=$
6. (5 pts.) Consider the equation $x^{5}+4 x y^{3}-3 y^{5}=2$. Use implicit differentiation to find $\frac{d y}{d x}$.
7. (5 pts.) Use logarithmic differentiation to find the derivative of $f(x)=\left(\frac{1}{x}\right)^{x}$.
8. (10 pts.) An object is propelled straight down from atop a 160 -foot-high tower at time $t=0$ seconds. At time t seconds its height is $s(t)=160-32 t-16 t^{2}$ feet.
(a) Find the object's height when its velocity is -96 feet per second.
(b) What is object's acceleration when its velocity is -96 feet per second.
9. (Bonus: 5 pts.) A plane is taxing down a runway that is one mile from a tower, as shown below. When the plane is $5 / 3$ miles from the tower, the distance y between tower and plane is increasing at a rate of 100 mph . What is the plane's velocity at this point in time?

