MATH 200 - Final Exam

Name:
R. Hammack May 10, 2021

Directions. Answer the questions in the space provided. This is a closed-notes, closed book exam. No calculators, no computers and no formula sheets.
For numeric answers, give exact, simplified quantities. ($\sqrt{2}$ instead of 2.14 , etc.).
Put your final answer in a box when appropriate.
You have three hours.
(1) (10 points) Answer the following questions involving the function $f(x)$ graphed below.

(a) $f^{\prime}(1)=$
(b) $f^{\prime}(4)=$
(c) $\lim _{x \rightarrow 1} \frac{3 x+1-2 f(x)}{x^{2}-3 x-2}=$
(d) $\lim _{x \rightarrow 4} \frac{2 f(x)-3}{x^{2}-2 x-8}=$
(e) $\int_{2}^{6} f(x) d x=$
(2) (12 points) Find the limits. Please show work.
(a) $\lim _{x \rightarrow \pi} \frac{5}{2+\sin (x)}=$
(b) $\lim _{x \rightarrow 5} \frac{\sqrt{x+4}-3}{x-5}=$
(c) $\lim _{x \rightarrow 0} \frac{e^{2 x}-2 x-1}{x^{2}}=$
(d) $\lim _{x \rightarrow \infty} x \tan \left(\frac{3}{x}\right)=$
(3) (18 points) Find the derivatives of the following functions.
(a) $\quad f(x)=5 x^{6}+\frac{3}{x}-7 \sin (x)+2$
(b) $\quad f(x)=x^{3} \cos (x)$
(c) $p(z)=\frac{8 z^{5}}{e^{z}}$
(d) $\quad f(x)=\ln \left(20 x^{3}-7 x\right)$
(e) $\quad h(x)=\tan ^{-1}\left(5 x^{2}\right)$
(f) $\quad f(x)=\left(1+\tan ^{4}(x)\right)^{3}$
(4) (5 points) Given the equation $y^{2}+9 x y=2 x^{4}$, find y^{\prime}.
(5) (5 points) Find the value of c for which the following function is continuous at $\frac{\pi}{4}$.

$$
f(x)= \begin{cases}\sin ^{2}(x)+c & \text { if } x<\frac{\pi}{4} \\ 1+\frac{c x}{\pi} & \text { if } x \geq \frac{\pi}{4}\end{cases}
$$

(6) (10 points) Determine whether the following statements are true or false. Explain.
(a) If $f^{\prime}(c)=0$ then f must have a local extremum at c.
(b) If $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ on an interval, then f is decreasing at an increasing rate.
(c) $\int\left(x^{2}-1\right)^{2} \mathrm{~d} x=\frac{\left(x^{2}-1\right)^{3}}{3}+C$.
(d) If $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ and $\lim _{x \rightarrow a^{-}} f(x)=f(a)$, then f is continuous at a.
(e) If the acceleration of an object is increasing, then its velocity is also increasing.
(7) (5 points) Find $\frac{d}{d x}\left[\int_{0}^{x^{2}} \frac{1}{(t+2)^{3}} d t\right]$.
(8) (8 points) Draw a graph of $y=f(x)$ meeting all of the following conditions.

- f is continuous on $(-\infty,-2) \cup(-2, \infty)$
- f is differentiable on $(-\infty,-2) \cup(-2,0) \cup(0, \infty)$.
- $\lim _{x \rightarrow-2^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow-2^{+}} f(x)=+\infty$
- $\lim _{x \rightarrow-\infty} f(x)=+\infty$ and $\lim _{x \rightarrow \infty} f(x)=-3$
- f, f^{\prime} and $f^{\prime \prime}$ meet the the conditions in the following table:

x	-3	-2	-1	0
$f(x)$	0	DNE	-1	0
$f^{\prime}(x)$	0	DNE	0	DNE
$f^{\prime \prime}(x)$	0	DNE		DNE

- $f^{\prime}(x)<0$ on $(-\infty,-2) \cup(-2,-1) \cup(0, \infty)$,
- $f^{\prime}(x)>0$ on $(-1,0)$,
- $f^{\prime \prime}(x)<0$ on $(-3,-2)$,
- $f^{\prime \prime}(x)>0$ on $(-\infty,-3) \cup(-2,0) \cup(0, \infty)$.

(9) (4 points) Suppose the derivative of a function $f(x)$ is $f^{\prime}(x)=(x+3)^{2}(x-2)(x+1)^{2}$ (a) Find the intervals where $f(x)$ is increasing/decreasing.
(b) List any local extrema of $f(x)$. Specify whether it is a maximum or minimum.
(10) (8 points) This problem concerns three functions f, g and h.

At $x=2$, the graph of $y=f(x)$ has tangent line $y=3 x+4$.
At $x=-1$, the graph of $y=g(x)$ has tangent line $y=-x+1$.
Suppose $h(x)=f(g(x))$.
Answer the following questions using the above information.
(a) $f(2)=$
(b) $f^{\prime}(2)=$
(c) $g(-1)=$
(d) $g^{\prime}(-1)=$
(e) $h(-1)=$
(f) $h^{\prime}(-1)=$
(g) Find the tangent line to the graph of $y=h(x)$ at $x=-1$.
(11) (9 points) Find the following indefinite integrals.
(a) $\int\left(2 x^{3}+\frac{5}{x}+\frac{1}{x^{5}}-\pi\right) d x$
(b) $\int \frac{x^{3}}{\sqrt{x^{4}+5}} d x$
(c) $\int \sin ^{2}(\theta) \cos (\theta) d \theta$
(12) (6 points) Compute the following definite integrals.
(a) $\int_{-1}^{1}\left(6 x^{5}-12 x^{3}\right) d x$
(b) $\int_{0}^{1} 3 x^{2}\left(x^{3}-1\right)^{4} d x$
(13) (10 points) A tank with a square base is to be constructed to hold 10,000 cubic feet of water. The metal top costs $\$ 6$ per square foot, and the concrete sides and bottom cost $\$ 4$ per square foot. What dimensions x and y yield the lowest cost of materials?

