Name: December 12, 2012
Directions. Answer the questions in the space provided. This is a closed-notes, closed book exam; no calculators, no computers and no formula sheets. Each problem (or part thereof) is 2 points. You have three hours.

1. (Warmup) Fill in each entry in the middle column with one o the symbols $<$,$\rangle , or =$ to express the relationship between the quantities to either side. Rows may be solved quickly using an understanding of course topics, or more slowly by brute force computation.

Left column	$\begin{aligned} & > \\ & \stackrel{>}{<} \end{aligned}$	Right column
$\sin \pi / 4$		$\tan \pi / 4$
π		e
$\int_{-1}^{1} x^{3} d x$		$\int_{0}^{1} x^{3} d x$
$\int_{-1}^{1} x^{2} d x$		$\int_{0}^{1} x^{2} d x$
$f^{\prime}(1)$ where $f(x)=x^{e}$		$g^{\prime}(1)$ where $g(x)=e^{x}$
$f^{\prime}(1,000)$ where $f(x)=x^{e}$		$g^{\prime}(1,000)$ where $g(x)=e^{x}$
number of vertical asymptotes of $f(x)=\frac{x^{2}+2 x+1}{x^{2}+4 x+3}$		number of vertical asymptotes of $g(x)=\frac{x+1}{x+3}$
number of vertical asymptotes of $y=\ln (x)$		number of horizontal asymptotes of $y=e^{x}$
number of points on the graph of $x^{2}+y^{2}=4$ at which the tangent line has slope $m=0$		number of points on the graph of $x^{2}+y^{2}=4$ at which the tangent line to has slope $m=-1$
$\lim _{x \rightarrow \infty} \frac{x^{4}}{x^{44}}$		$\lim _{x \rightarrow-\infty} \frac{1}{x}$
$\sum_{k=1}^{33} 23$		$\sum_{k=3}^{35} 23$
$\sum_{k=1}^{33} 23 k$		$\sum_{k=3}^{35} 23 k$
$\tan ^{-1}(1)$		$\lim _{x \rightarrow \infty} \tan ^{-1}(x)$
$f^{\prime \prime}(0)$ where $f(x)=x^{2}$		$g^{\prime \prime}(0)$ where $g(x)=x^{3}$
number of inflection points for $f(x)=x^{3}$		number of inflection points for of $f(x)=\sin (x)$

2. Warm up. (Quick answer.)
(a) $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=$
(b) $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}=$
(c) $\lim _{x \rightarrow \pi / 2} \frac{\sin (x)}{x}=$
(d) $\frac{d}{d x}\left[\frac{\sin (x)}{x}\right]=$
(e) $\sin \left(\frac{4 \pi}{3}\right)=$
(f) $\frac{d}{d x}\left[\int_{1}^{x} \frac{\sin (t)}{t} d t\right]=$
(g) $\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h}=$
(h) $\frac{d}{d x}\left[x^{3} \sin (x)\right]=$
(i) $\int \frac{1}{\sqrt{1-x^{2}}} d x=$
(j) $\frac{d}{d x}\left[\sin ^{-1}(x)\right]=$
(k) $\sin \left(\tan ^{-1} x\right)=$
(1) $\tan ^{-1}(\sqrt{3})=$
(m) $\lim _{x \rightarrow \infty} \tan ^{-1}(x)=$
(n) $\ln \left(\frac{1}{\sqrt{e}}\right)=$
(o) $\lim _{x \rightarrow 0^{+}} \ln (x)=$
(p) $\lim _{x \rightarrow 1} \ln (x)=$
(q) $\int_{1}^{e} \frac{1}{x} d x=$
(r) If $f(x)=e^{x+3}$, then $f^{-1}(x)=$
(s) $\frac{d}{d x}\left[\sqrt[5]{x^{7}}\right]=$
(t) $\int_{0}^{3} x^{2} d x=$
3. Evaluate each limit, or explain why it does not exist.
(a) $\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h}$
(b) $\lim _{x \rightarrow-5} \frac{x^{2}+3 x-10}{x+5}$
4. Use the limit definition of the derivative to find the derivative of the function $f(x)=3 x^{2}$.
5. Let the function f be defined as follows. $f(x)=\left\{\begin{array}{cc}x+c & x<1 \\ x^{2}+c^{2} & 1 \leq x\end{array}\right.$

For what values of c, if any, is f continuous at $x=1$?
6. Find the indicated derivatives.
(a) $\frac{d}{d x}\left[\sqrt{x^{3}+x^{2}+1}\right]=$
(b) $\frac{d}{d x}[x \ln (\sec (3 x))]=$
7. The equation $x^{3}+y^{3}+2 x y=4$ determines a curve in the $x y$-plane. Find the slope of the tangent line to the curve at the point $(1,1)$.
8. Find the following indefinite integrals.
(a) $\int \frac{\cos (x)}{2 \sin (x)+1} d x=$
(b) $\int\left(x^{3}-4 x+2\right)^{3}\left(3 x^{2}-4\right) d x=$
9. Find the following definite integrals.
(a) $\int_{-1}^{1} x \sqrt{x^{2}+3} d x=$
(b) $\int_{0}^{\sqrt{3}} \frac{1}{1+x^{2}} d x=$
10. Show that the equation $x+2 \cos x=0$ has at least one real solution.

Explain which major theorem in Calculus you used to answer this question and how it helped you solve the problem.
11. A particle is traveling along the curve $y^{2}-x^{3}=1$.

As it reaches the point $(2,3)$, the y-coordinate is increasing at the rate of $4 \mathrm{~cm} / \mathrm{s}$. How fast is the x-coordinate changing at that instant?
12. Find the area enclosed between the graphs of $y=x^{2}$ and $y=x^{3}$.
13. You have a 200 feet of chain link fence to enclose three rectangular pens, as illustrated. What dimensions (i.e. x feet by y feet) yield the greatest total enclosed area?

