MATH 200 – FINAL EXAM VCU Sections 1,2,4,5 December 12, 2012

Name: _

Directions. Answer the questions in the space provided. This is a closed-notes, closed book exam; no calculators, no computers and no formula sheets. Each problem (or part thereof) is 2 points. You have three hours.

1. (Warmup) Fill in each entry in the middle column with one o the symbols <, >, or = to express the relationship between the quantities to either side. Rows may be solved quickly using an understanding of course topics, or more slowly by brute force computation.

more slowly by brute force computation.		
Left column	> = <	Right column
$\sin \pi/4$		$\tan \pi/4$
π		e
$\int_{-1}^{1} x^{3} dx$		$\int_0^1 x^3 dx$
$\int_{-1}^{1} x^2 dx$		$\int_0^1 x^2 dx$
$f'(1)$ where $f(x) = x^e$		$g'(1)$ where $g(x) = e^x$
$f'(1,000)$ where $f(x) = x^e$		$g'(1,000)$ where $g(x) = e^x$
number of vertical asymptotes of $f(x) = \frac{x^2 + 2x + 1}{x^2 + 4x + 3}$		number of vertical asymptotes of $g(x) = \frac{x+1}{x+3}$
number of vertical asymptotes of $y = \ln(x)$		number of horizontal asymptotes of $y = e^x$
number of points on the graph of $x^2 + y^2 = 4$ at which the tangent line has slope $m = 0$		number of points on the graph of $x^2 + y^2 = 4$ at which the tangent line to has slope $m = -1$
$\lim_{x \to \infty} \frac{x^4}{x^{44}}$		$\lim_{x \to -\infty} \frac{1}{x}$
$\sum_{k=1}^{33} 23$		$\sum_{k=3}^{35} 23$
$\sum_{k=1}^{33} 23k$		$\sum_{k=3}^{35} 23k$
$\tan^{-1}(1)$		$\lim_{x\to\infty}\tan^{-1}(x)$
$f''(0)$ where $f(x) = x^2$		$g''(0)$ where $g(x) = x^3$
number of inflection points for $f(x) = x^3$		number of inflection points for of $f(x) = \sin(x)$

2. Warm up. (Quick answer.)

(a)
$$\lim_{x \to 0} \frac{\sin(x)}{x} =$$

(b)
$$\lim_{x \to \infty} \frac{\sin(x)}{x} =$$

(c)
$$\lim_{x \to \pi/2} \frac{\sin(x)}{x} =$$

(d)
$$\frac{d}{dx} \left[\frac{\sin(x)}{x} \right] =$$

(e)
$$\sin\left(\frac{4\pi}{3}\right) =$$

(f)
$$\frac{d}{dx} \left[\int_{1}^{x} \frac{\sin(t)}{t} dt \right] =$$

(g)
$$\lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} =$$

(h)
$$\frac{d}{dx} \left[x^3 \sin(x) \right] =$$

(i)
$$\int \frac{1}{\sqrt{1-x^2}} dx =$$

(j)
$$\frac{d}{dx} \left[\sin^{-1}(x) \right] =$$

(k) $\sin(\tan^{-1}x) =$

(l)
$$\tan^{-1}(\sqrt{3}) =$$

(m) $\lim_{x\to\infty} \tan^{-1}(x) =$

(n)
$$\ln\left(\frac{1}{\sqrt{e}}\right) =$$

(o)
$$\lim_{x \to 0^+} \ln(x) =$$

(p) $\lim_{x \to 1} \ln(x) =$

(q)
$$\int_1^e \frac{1}{x} \, dx =$$

(r) If
$$f(x) = e^{x+3}$$
, then $f^{-1}(x) =$

(s)
$$\frac{d}{dx} \left[\sqrt[5]{x^7} \right] =$$

(t)
$$\int_0^3 x^2 dx =$$

3. Evaluate each limit, or explain why it does not exist.

(a)
$$\lim_{h \to 0} \frac{\frac{1}{2+h} - \frac{1}{2}}{h}$$

(b)
$$\lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5}$$

4. Use the limit definition of the derivative to find the derivative of the function $f(x) = 3x^2$.

5. Let the function f be defined as follows.
$$f(x) = \begin{cases} x+c & x < 1 \\ x^2+c^2 & 1 \le x \end{cases}$$

For what values of c, if any, is f continuous at x = 1?

6. Find the indicated derivatives.

(a)
$$\frac{d}{dx}\left[\sqrt{x^3+x^2+1}\right] =$$

(b)
$$\frac{d}{dx} \left[x \ln(\sec(3x)) \right] =$$

7. The equation $x^3 + y^3 + 2xy = 4$ determines a curve in the *xy*-plane. Find the slope of the tangent line to the curve at the point (1, 1). 8. Find the following indefinite integrals.

(a)
$$\int \frac{\cos(x)}{2\sin(x)+1} \, dx =$$

(b)
$$\int (x^3 - 4x + 2)^3 (3x^2 - 4) dx =$$

9. Find the following definite integrals.

(a)
$$\int_{-1}^{1} x \sqrt{x^2 + 3} \, dx =$$

(b)
$$\int_0^{\sqrt{3}} \frac{1}{1+x^2} \, dx =$$

10. Show that the equation $x + 2\cos x = 0$ has at least one real solution.

Explain which major theorem in Calculus you used to answer this question and how it helped you solve the problem.

11. A particle is traveling along the curve $y^2 - x^3 = 1$. As it reaches the point (2,3), the *y*-coordinate is increasing at the rate of 4 cm/s. How fast is the *x*-coordinate changing at that instant? 12. Find the area enclosed between the graphs of $y = x^2$ and $y = x^3$.

13. You have a 200 feet of chain link fence to enclose <u>three</u> rectangular pens, as illustrated. What dimensions (i.e. x feet by y feet) yield the greatest total enclosed area?

