Name: \qquad
Directions: Closed book, closed notes, no calculators. Put all phones, etc., away. You will need only a pencil or pen.

1. (7 points each) Find the indefinite integrals.
(a) $\int\left(x^{3}+\frac{1}{x}+e^{x}\right) d x$
(b) $\int\left(\frac{3}{x^{5}}+1\right) d x$
(c) $\int(\sec (x) \tan (x)+3 \sin (x)) d x$
(d) $\int \frac{1}{\sqrt{x}} d x$
(e) $\int \frac{5}{\sqrt{1-x^{2}}} d x$
(f) $\int \frac{x^{2}+1}{x} d x$
2. (8 points) Is the equation $\int \frac{\sin \left(\frac{1}{x}\right)}{x^{2}} d x=\cos \left(\frac{1}{x}\right)+C$ true or false? Explain.
3. (8 points) Suppose $f(x)$ is a function for which $f^{\prime}(x)=2 x+\cos (x)$ and $f(\pi)=0$. Find $f(x)$.
4. (8 points each) Find the limits.
(a) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(b) $\lim _{x \rightarrow \pi} \frac{\cos (x)+1}{(x-\pi)^{2}}$
(c) $\lim _{x \rightarrow \infty}(\ln (x+1)-\ln (2 x))$
5. (10 points) An open-top box is made from a 12 by 12 inch piece of cardboard by cutting a square from each corner, and folding up. What should x be to maximize the volume of the box?

6. (8 points) Below is the graph of the derivative $f^{\prime}(x)$ of a function $f(x)$. Answer the following question about the function $f(x)$.
(a) On what intervals is $f(x)$ is concave up?
(b) On what intervals is $f(x)$ is concave down?

