Name: \qquad
Directions: Closed book, closed notes, no calculators. Put all phones, etc., away. You will need only a pencil or pen.

1. (36 points) Find the derivatives of these functions. You do not need to simplify your answers.
(a) $\frac{d}{d x}\left[x^{3} \ln (x)\right]=$
(b) $\frac{d}{d x}\left[\tan ^{-1}(x)\right]=$
(c) $\frac{d}{d x}\left[\left(2+\ln \left(x^{5}-x^{2}\right)\right)^{4}\right]=$
(d) $\frac{d}{d x}\left[x+\frac{\ln (x)}{x}\right]=$
(e) $\frac{d}{d x}\left[\frac{1}{\sqrt{\ln (x)}}\right]=$
(f) $\frac{d}{d x}\left[\sin ^{-1}\left(x^{3}+3 x\right)\right]=$
2. (4 points) Find: $\lim _{h \rightarrow 0} \frac{\tan ^{-1}(2+h)-\tan ^{-1}(2)}{h}=$
3. (12 points) Given the equation $\ln |x+y|=x y+1$, find y^{\prime}.
4. (12 points) A spherical balloon is deflating in such a way that its volume is decreasing at a rate of 18 cubic feet per hour. At what rate is the radius changing when the radius is 3 feet?
5. (12 points) A rocket has a height of $t+t^{2}$ meters t seconds after it is launched. How high is the rocket when its velocity is 101 meters per second?
6. (12 points) Find the locations (x-coordinates) of any local extrema of $f(x)=x^{2} e^{x}$.
7. (12 points) The graph of the derivative $f^{\prime}(x)$ of a function f is shown below.
(a) State the critical points of f.
(b) State the interval(s) on which f increases.
(c) State the interval(s) on which f decreases.

