Name: \qquad
Directions: Closed book, closed notes, no calculators. Put phones, etc., away. You will need only a pencil or pen.

1. (10 points) Use a limit definition of the derivative to find the derivative of $f(x)=\sqrt{x+1}$.
2. (12 points) The graph of a function $f(x)$ is sketched below.
(a) Using the same coordinate axis, sketch a graph of the derivative $f^{\prime}(x)$.
(b) Suppose $g(x)=\frac{1}{f(x)}$. Find $g^{\prime}(0)$.

3. (48 points) Find the derivatives of these functions. You do not need to simplify your answers.
(a) $f(x)=5 x^{7}+3 x-\sqrt{2}$
(b) $f(x)=\sin (x)+\sec (x)$
(c) $f(x)=\sin (x) \sec (x)$
(d) $f(x)=\sin (\sec (x))$
(e) $f(x)=\sec (\sin (x))$
(f) $f(x)=\frac{\tan (x)}{x^{2}+e^{x}}$
(g) $f(x)=\sqrt{e^{x}+x}$
(h) $y=\cos \left(e^{x^{2}+x}\right)$
4. (10 points) Given that $z=w \cos (w)$, find $\frac{d^{2} z}{d w^{2}}$.
5. (10 points) Find the equation of the tangent line to the graph of $f(x)=e^{-x}$ at $(0, f(0))$.
6. (10 points) Find all x for which the tangent to the graph of $f(x)=e^{x}-2 x$ at $(x, f(x))$ is horizontal.
