1. (10 pts.) The graph $y=f^{\prime}(x)$ of the derivative of a function $f(x)$ is shown. Answer the questions about $f(x)$.

(a) State the intervals on which the function $f(x)$ increases.
(b) State the intervals on which the function $f(x)$ decreases.
(c) State the intervals on which the function $f(x)$ is concave up.
(d) State the intervals on which the function $f(x)$ is concave down.
(e) Suppose $f(0)=0$. Using the above information (and coordinate axis), sketch the graph of $f(x)$.
2. (15 pts.) Find and identify all relative extrema of the function $f(x)=2-3 x^{4}-8 x^{3}-6 x^{2}$ on the interval $\mathbb{R}=(-\infty, \infty)$. State the extrema in the coordinate form (x, y).
3. (15 pts.) US Postal Service regulations state that the length plus girth of a package cannot exceed 108 inches. You must mail a package whose width and height are equal, and with the greatest possible volume.
Find the dimensions of the package.

Answer:

length $=$
width $=$ height $=$
4. (20 points) Evaluate the following limits.
(a) $\lim _{x \rightarrow \pi} \frac{1+\cos x}{(\pi-x)^{2}}=$
(b) $\lim _{x \rightarrow \infty} x e^{-x}=$
5. (24 points) Find the indicated indefinite integrals.
(a) $\int\left(7+7 x+\sqrt[5]{x^{2}}\right) d x=$
(b) $\int\left(e^{4 x}+4 \cos x+20\right) d x=$
(c) $\int \frac{2 x}{x^{2}} d x=$
6. (8 pts.) Is the equation $\int(1+\ln x) d x=x+\ln x+C$ true or false? Justify your answer.
7. (8 pts.) Suppose $f(x)$ is a function for which $f^{\prime}(x)=-\sin (x)$ and $f(2 \pi / 3)=-3$. Find $f(x)$.

