1. (10 pts.) The graph of a function f(x) is shown. Using the same coordinate axis, sketch the graph of y = f'(x).

2. (10 pts.) Find all points (x, y) on the graph of $y = x + \frac{1}{x-3}$ where the tangent line is horizontal.

3. (14 pts.) Find the indicated derivatives.

(a)
$$f(\theta) = 5 + \ln(\pi\theta) + \sqrt{\theta^3}$$

 $f'(\theta) =$
 $f''(\theta) =$

(b)
$$\frac{d}{dx}\left[\frac{x}{x^3+x^2+1}\right] =$$

4. (21 pts.) Find the indicated derivatives.

(a)
$$\frac{d}{dx} \left[e^{4x} \sqrt{3x+1} \right] =$$

(b)
$$\frac{d}{dx} \left[\ln \left(\sec(x^3) \right) \right] =$$

(c)
$$\frac{d}{dx} \left[\tan^{-1} \left(\pi x \right) \right] =$$

5. (10 pts.) Consider the equation $x\sin(y) = y^3$. Use implicit differentiation to find $\frac{dy}{dx}$.

^{6. (10} pts.) Use logarithmic differentiation to find the derivative of $f(x) = x^{\cos(x)}$.

- 7. (10 pts.) This problem concerns a rock that is thrown off a tower at time t = 0. At time t (in seconds) it has a height of $s(t) = 48 + 32t 16t^2$ feet. Please show your work in answering the following questions.
 - (a) When does the rock hit the ground?

(b) What is its velocity when it hits the ground?

8. (7 pts.) Simplify: $\sec(\cos^{-1}(x)) =$

- 9. (4 pts.)
 - (a) If $f(x) = e^x$, then $f^{-1}(x) =$ _____.
 - (b) Carefully graph f(x) and $f^{-1}(x)$ below.

- 10. (4 pts.)
 - (a) Graph the function $g(x) = x^2 1$ below.
 - (b) Now carefully graph the derivative g'(x).

