

I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation (Circle one)

- 1. (10 pts.) This problem concerns the functions $f(x) = \frac{\sqrt{x+2}}{\cos(x)+2}$ and $g(x) = \sqrt{x}-2$.
 - (a) State the domain of f(x).
 - (b) $f \circ g(x) =$
- 2. (10 pts.) Consider the equation $4\sin^2(x) 1 = 0$. Find all solutions x that lie in the interval $[0, 2\pi)$.

3. (10 pts.) Sketch the graph of any function y = f(x) that meets the following four criteria: The line x = -1 is a vertical asymptote, the line y = 2 is a horizontal asymptote, f(1) = -2, and $\lim_{x \to 3} f(x) = 0$.

- 4. (20 pts.) Answer the following questions about the function y = f(x) graphed below.
 - (a) f(1) =
 - (b) $f \circ f(2) =$
 - (c) $\lim_{x \to 0} f(x) =$
 - (d) $\lim_{x \to 1} f(x) =$
 - (e) $\lim_{x \to 1^+} f(x) =$
 - (f) $\lim_{x \to 1^-} f(x) =$
 - (g) $\lim_{x \to \infty} f(x) =$
 - (h) $\lim_{x \to -\infty} f(x) =$
 - (i) State an interval on which f(x) is continuous.
 - (j) State an x-value at which f(x) is discontinuous.

5. (28 pts.) Evaluate the following limits.If you want credit, show your steps, explain your reasoning, and carry limits as appropriate.

(a)
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 + 4x - 5} =$$

(b)
$$\lim_{h \to 0} \frac{\sqrt{5+h} - \sqrt{5}}{h} =$$

(c)
$$\lim_{x \to 4^+} \frac{(-x+4)(x+2)}{|-x+4|} =$$

(d)
$$\lim_{\theta \to 0} \frac{1}{\theta} \tan(3\theta) =$$

6. (12 pts.) Find all the horizontal asymptotes and vertical asymptotes of $f(x) = \frac{x^2 + x - 2}{x^2 - x - 6}$.

7. (10 pts.) Find the value a such that the following f(x) is continuous at every number x.

$$f(x) = \begin{cases} x^2 - 2 & \text{if } x < 3\\ ax & \text{if } x \ge 3 \end{cases}$$