VCU

MATH 200

Calculus I

R. Hammack

Test 3

April 17, 2015

Name:							

Score: _____

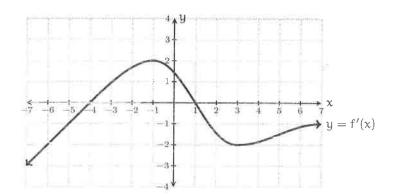
Directions. Answer the questions in the space provided. To get full credit, please show and explain your work as appropriate. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used.

1. (25 points) Find the indefinite integrals.

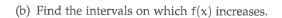
(a)
$$\int \left(x^4 + \frac{1}{x} + \sqrt{2} \right) dx =$$

(b)
$$\int \frac{1}{x^2} \, \mathrm{d}x =$$


(c)
$$\int e^{2x} dx =$$

(d)
$$\int 3\sec(x)\tan(x)dx =$$

(e) If f(x) and g(x) are differentiable functions, then

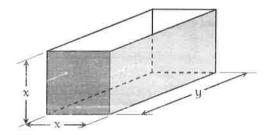

$$\int \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} dx =$$

2. (15 pts.) The graph of the derivative f'(x) of a function f(x) is sketched below. Answer the following questions about the function f(x).

- (a) List the critical points of f(x).
- (b) State the interval(s) on which f(x) increases.
- (c) State the interval(s) on which f(x) decreases.
- (d) State the locations of the relative extrema of f(x).
- (e) State the interval(s) on which f(x) is concave down.

3. (15 pts.) Consider the function $f(x) = x^2 e^{-x}$.						
(a) Find the critical points of $f(x)$.						

(c) Find the intervals on which
$$f(x)$$
 decreases.


- (d) State the locations of the local maxima of f(x).
- (e) State the locations of the local minima of f(x).

4. (20 pts.) Use L'Hôpital's rule to find the limits.

(a)
$$\lim_{x\to\pi}\frac{\sin(x)}{x^2-\pi^2}=$$

(b)
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x =$$

5 (15 pts.) A metal box with two square ends and an open top is to contain a volume of 36 cubic inches. What dimensions κ and κ will minimize the total area of the metal surface?

6. (10 pts.) Suppose f(x) is a function for which

$$f'(x)=\frac{3}{\sqrt[3]{x^2}} \ \text{ and } \ f(-1)=-5. \quad \text{ Find } f(x).$$