> 7. (10 pts.) Suppose $f(x)$ is a function for which $f^{\prime}(x)=\frac{1}{x}+3 x$ and $f(1)=5$. Find $f(x)$.

Name: \qquad

Score: \qquad
Directions. Solve the following questions in the space provided. Unless noted otherwise, you must show your work to receive full credit. This is a closed-book, closednotes test. Calculators, computers, etc., are not used. Put a your final answer in a box, where appropriate.

1. (32 points) Find the indefinite integrals.
(a) $\int\left(5 x+3+x^{4}\right) \mathrm{d} x=$
(b) $\int\left(\frac{1}{x^{2}}+\sqrt{x}\right) d x=$
(c) $\int \frac{6}{\sqrt{1-x^{2}}} \mathrm{dx}=$
(d) $\int 4 \sin (3 x) d x=$
2. (10 pts .) Suppose you have 120 feet of fencing material to enclose two rectangular regions, as illustrated. Find the dimensions x and y that maximize the total enclosed area.

3. (10 pts.) The graph $y=f^{\prime}(x)$ of the derivative of a function $f(x)$ is shown. Answer the questions about $f(x)$.

(a) State the intervals on which $f(x)$ increases.
(b) State the intervals on which $f(x)$ decreases.
(c) List all critical points of $f(x)$.
(d) At which of these critical points is there a local maximum?
(e) State the intervals on which the function $f(x)$ is concave up.
4. (20 pts.) Find the limits.
(a) $\lim _{x \rightarrow 0} \frac{3 x^{2}}{\cos (x)-1}=$
(b) $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=$
5. (8 pts.$)$ Is the following equation true or false?
$\int \frac{\sin \left(\frac{1}{x}\right)}{x^{2}} d x=\cos \left(\frac{1}{x}\right)+C$
Explain.
6. (10 pts.) A 13 -foot ladder is leaning against a wall, as illustrated, when its base begins to slide away from the wall at a rate of 5 feet per second. At what rate is the angle θ changing when the base is 12 feet from the wall?

