	MATH 200 Calculus I
	R. Hammack A. Hoeft
	Test 3
	April 12, 2013
N	ame:
Sc	core:
Di pr wo no Pu	irections. Solve the following questions in the space ovided. Unless noted otherwise, you must show your ork to receive full credit. This is a closed-book, closed-otes test. Calculators, computers, etc., are not used. It a your final answer in a box, where appropriate.

7. (10 pts.) Suppose f(x) is a function for which $f'(x) = \sqrt{x} + 2$ and f(4) = 7. Find f(x).

1. (32 points) Find the indefinite integrals.

(a)
$$\int (x^5 + x + 1) dx =$$

(b)
$$\int 4e^{3x} dx =$$

$$(c) \quad \int \frac{5}{1+x^2} \, \mathrm{d}x =$$

(d)
$$\int \left(\frac{1}{x} + \cos(x)\right) dx =$$

2. (10 pts.) Suppose you have 160 feet of fencing material to enclose a rectangular region. One side of the rectangle will border a building, so no fencing is required for that side. Find the dimensions x and y that maximize the fenced area.

3. (10 pts.) The graph y = f'(x) of <u>the derivative</u> of a function f(x) is shown. Answer the questions about f(x).

- (a) State the intervals on which f(x) increases.
- (b) State the intervals on which f(x) decreases.
- (c) List all critical points of f(x).
- (d) At which of these critical points is there a local maximum?
- (e) State the intervals on which the function f(x) is concave up.

4. (20 pts.) Find the limits.

(a)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} =$$

(b)
$$\lim_{x\to 0^+} x^x =$$

5. (8 pts.) Is the following equation true or false?

$$\int \left(\cos(x)\frac{1}{x} - \sin(x)\ln(x)\right) dx = \cos(x)\ln(x) + C$$

Explain.

6. (10 pts.) Water flows into the conical tank (shown below) at a rate of 9 cubic feet per minute. How fast is the water level h rising when the water is 6 feet deep?

The volume of a cone of height h and radius r is $V=\frac{1}{3}\pi r^2h$