MATH 200	
Calculus I	
R. Hammack A. Hoeft	
Test 2	
March 18, 2013	
Name:	
Score:	
Directions. Solve the following questions in the space provided. Unless noted otherwise, you must show your work to receive full credit. This is a closed-book, closed-notes test. Calculators, computers, etc., are not used. Put a your final answer in a box, where appropriate.	

1. (20 points) Warmup: short answer.

(a)
$$\frac{d}{dx} [\cos(x) + \ln(x)] =$$
 (f) $\ln(\sqrt{e}) =$

(b)
$$\frac{d}{dx} [\cos(x)\ln(x)] =$$
 (g) $\cos^{-1}(1/2) =$

(c)
$$\frac{d}{dx} [\cos(\ln(x))] =$$
 (h) $\ln(\sin(\pi/2)) =$

(d)
$$\frac{d}{dx} [x^e] =$$
 (i) $\lim_{x \to 1} \tan^{-1}(x) =$

(e)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[e^x \right] =$$
 (j) $\lim_{x \to -\infty} e^x =$

7. (5 points) Simplify: $sec(sin^{-1}(x)) =$

8. (10 points) Sketch the graph of both $y = e^x$ and $y = \ln(x)$ below. Be sure to indicate which graph is which.

2. (10 points) Answer the following questions concerning the function f(x) graphed below.

- (a) Using the coordinate axis above, sketch the graph of the derivative y = f'(x).
- **(b)** Suppose $g(x) = x^2 f(x)$. Find g'(3).

- 3. (15 points) An object moving on a straight line is $s(t) = t^3 3t^2$ feet from its starting point at time t seconds.
 - (a) What is the object's velocity at time t?
 - (b) What is its acceleration at time t?
 - (c) Find its acceleration when its velocity is -3 feet per second.

4. (10 points) This problem concerns the functions $f(x) = x^2 + 2x^3$ and $g(x) = x^2 - 2x^3 + 48x$. Find all x for which the tangent to y = f(x) at (x, f(x)) is parallel to the tangent to y = g(x) at (x, g(x)). 5. (20 points) Find the following derivatives.

(a)
$$\frac{d}{dx} \left[\tan(x) + \frac{1}{x^2} + e^2 + 3 \right] =$$

(b)
$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\sqrt{\frac{\mathrm{x}^2+5}{\mathrm{x}+1}}\right] =$$

(c)
$$\frac{d}{dx} [\sin^{-1}(\pi x)] =$$

(d)
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[x e^{\cos(3x)} \right] =$$

- 6. (10 points) This question concerns the equation $xy^3 = xy + 6$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$.

(b) Use your answer from part (a) to find the equation of the tangent line to the graph of $xy^3 = xy + 6$ at the point (1, 2).