7. (5 points) Simplify: $\sec \left(\sin ^{-1}(x)\right)=$

MATH 200

Calculus I

R. Hammack
A. Hoeft

Test 2

[刍
March 18, 2013

Name: \qquad

Score: \qquad
Directions. Solve the following questions in the space provided. Unless noted otherwise, you must show your work to receive full credit. This is a closed-book, closednotes test. Calculators, computers, etc., are not used. Put a your final answer in a box, where appropriate.
8. (10 points) Sketch the graph of both $y=e^{x}$ and $y=\ln (x)$ below. Be sure to indicate which graph is which.

1. (20 points) Warmup: short answer.
(a) $\frac{d}{d x}[\cos (x)+\ln (x)]=$
(f) $\ln (\sqrt{e})=$
(b) $\frac{d}{d x}[\cos (x) \ln (x)]=$
(g) $\cos ^{-1}(1 / 2)=$
(c) $\frac{d}{d x}[\cos (\ln (x))]=$
(h) $\ln (\sin (\pi / 2))=$
(d) $\frac{\mathrm{d}}{\mathrm{dx}}\left[x^{e}\right]=$
(i) $\lim _{x \rightarrow 1} \tan ^{-1}(x)=$
(e) $\frac{\mathrm{d}}{\mathrm{dx}}\left[e^{\mathrm{x}}\right]=$
(j) $\lim _{x \rightarrow-\infty} e^{x}=$
2. (10 points) Answer the following questions concerning the function $f(x)$ graphed below.

(a) Using the coordinate axis above, sketch the graph of the derivative $y=f^{\prime}(x)$.
(b) Suppose $g(x)=x^{2} f(x)$. Find $g^{\prime}(3)$.
3. (15 points) An object moving on a straight line is $s(t)=t^{3}-3 t^{2}$ feet from its starting point at time t seconds.
(a) What is the object's velocity at time t ?
(b) What is its acceleration at time t ?
(c) Find its acceleration when its velocity is -3 feet per second.
4. (10 points) This problem concerns the functions $f(x)=x^{2}+2 x^{3}$ and $g(x)=x^{2}-2 x^{3}+48 x$. Find all x for which the tangent to $y=f(x)$ at $(x, f(x))$ is parallel to the tangent to $y=g(x)$ at $(x, g(x))$.
5. (20 points) Find the following derivatives.
(a) $\frac{d}{d x}\left[\tan (x)+\frac{1}{x^{2}}+e^{2}+3\right]=$
(b) $\frac{\mathrm{d}}{\mathrm{dx}}\left[\sqrt{\frac{x^{2}+5}{x+1}}\right]=$
(c) $\frac{\mathrm{d}}{\mathrm{dx}}\left[\sin ^{-1}(\pi x)\right]=$
(d) $\frac{\mathrm{d}}{\mathrm{dx}}\left[x e^{\cos (3 x)}\right]=$
6. (10 points) This question concerns the equation $x y^{3}=x y+6$.
(a) Use implicit differentiation to find $\frac{d y}{d x}$.
(b) Use your answer from part (a) to find the equation of the tangent line to the graph of $\quad x y^{3}=x y+6$ at the point $(1,2)$.
