VCU

MATH 200

CALCULUS I

R. Hammack

Test 1

September 18, 2015

Name:				

Score: _____

Directions. Answer the questions in the provided space. Unless noted otherwise, you must show and explain your work to receive full credit. Put your final answer in a box when appropriate.

This is a closed-book, closed-notes test. Calculators, computers, etc., are not used. Please put all phones away.

1. (20 points) Warmup: short answer.

(a)
$$8^{2/3} =$$

(b)
$$\cos\left(\frac{7\pi}{6}\right) =$$

(c)
$$\ln\left(\sqrt{e^5}\right) =$$

(d)
$$e^{\ln(x)} =$$

(e)
$$e^{\ln(4) + \ln(5)} =$$

(f)
$$3\ln(2) + \ln\left(\frac{1}{8}\right) =$$

(g) If
$$f(x) = e^x$$
, then $f^{-1}(x) =$

(h)
$$\tan^{-1}(-1) =$$

(i)
$$\sin(\sin^{-1}(0.5)) =$$

(j)
$$\lim_{x\to -\infty} e^x =$$

2. (10 points) For the functions f(x) and g(x) graphed below, find

(a)
$$\lim_{x\to 1} f(x)g(x) =$$

(b)
$$\lim_{x\to 1} f(g(x)) =$$

3. (5 points) Sketch the graphs of $y=e^x$ and $y=\ln(x)$.

4. (20 points) Find the following limits.

(a)
$$\lim_{x\to 5} \frac{x^2-25}{x-5} =$$

(b)
$$\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9} =$$

(c)
$$\lim_{h\to 0} \frac{\frac{1}{2+h} - \frac{1}{2}}{h}$$

(d)
$$\lim_{x\to 0} \sin\left(\frac{\pi x + x^2}{4x}\right) =$$

- **5.** (15 points) Sketch the graph of a function that meets all of the following criteria.
 - (a) The domain of f(x) is all real numbers except x = 1 and x = 5

(b)
$$\lim_{x\to 1^+} f(x) = 2$$
, and $\lim_{x\to 1^-} f(x) = 4$

(c) f(x) is continuous at all real numbers except x = 1 and x = 5

(d)
$$\lim_{x\to\infty} f(x) = 0$$
 and $\lim_{x\to-\infty} f(x) = 1$

(e) The line x = 5 is a vertical asymptote

6. (5 points) Simplify: $\cos(\sin^{-1}(x)) =$

7. (5 points) Find the inverse of the function $f(x) = e^{2x} + 1$.

8. (10 points) Find all solutions of the equation $\cos^2(x) = \cos(x)$.

9. (10 points) Find the horizontal and vertical asymptotes of the function $f(x)=\frac{x^2+x-6}{2x^2-18}$.