\qquad

1. (5 points) In this problem $y=x^{2}+e^{x}$.
(a) $\frac{d y}{d x}=2 x+e^{x}$
(b) $\frac{d^{2} y}{d x^{2}}=2+e^{x}$
(c) $\frac{d^{3} y}{d x^{3}}=e^{x}$
2. (10 points) This problem concerns the function $f(x)=\sin \left(x^{2}\right)$.
(a) Find $f^{\prime}(x) . \quad$ By the chain rule, $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$.
(b) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(\sqrt{\pi}, f(\sqrt{\pi}))$.

A point on the tangent line is $(\sqrt{\pi}, f(\sqrt{\pi}))=\left(\sqrt{\pi}, \sin \left(\sqrt{\pi}^{2}\right)\right)=(\sqrt{\pi}, \sin (\pi))=(\sqrt{\pi}, 0)$ The slope of the line is $f^{\prime}(\sqrt{\pi})=\cos \left(\sqrt{\pi}^{2}\right) 2 \sqrt{\pi}=\cos (\pi) 2 \sqrt{\pi}=-1 \cdot 2 \sqrt{\pi}=-2 \sqrt{\pi}$ By the point-slope formula, the equation for the tangent line is

$$
\begin{aligned}
y-y_{0} & =m\left(x-x_{0}\right) \\
y-0 & =-2 \sqrt{\pi}(x-\sqrt{\pi}) \\
y & =-2 \sqrt{\pi} x+2 \sqrt{\pi} \sqrt{\pi} \\
y & =-2 \sqrt{\pi} x+2 \pi
\end{aligned}
$$

Answer: The equation of the tangent line is $y=-2 \sqrt{\pi} x+2 \pi$.
3. (5 points) Two functions $f(x)$ and $g(x)$ are graphed below. Suppose $h(x)=f(g(x))$. Find $h^{\prime}(3)$. Please show your work carefully.

By the chain rule, $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
Thus $h^{\prime}(3)=f^{\prime}(g(3)) g^{\prime}(3)=f^{\prime}(1) \cdot(-1)=\frac{1}{2} \cdot(-1)=-\frac{1}{2}$
\qquad

1. (5 points) In this problem $y=2 x+\cos (x)$
(a) $\frac{d y}{d x}=2-\sin (x)$
(b) $\frac{d^{2} y}{d x^{2}}=-\cos (x)$
(c) $\frac{d^{3} y}{d x^{3}}=\sin (x)$
2. (10 points) This problem concerns the function $f(x)=\sin \left(\pi e^{x}\right)$.
(a) Find $f^{\prime}(x)$. By the chain rule $f^{\prime}(x)=\cos \left(\pi e^{x}\right) D_{x}\left[\pi e^{x}\right]=\cos \left(\pi e^{x}\right) \pi e^{x}$
(b) Find the equation of the tangent line to the graph of $y=f(x)$ at the point $(0, f(0))$.

A point on the tangent line is $(0, f(0))=\left(0, \sin \left(\pi e^{0}\right)\right)=(0, \sin (\pi \cdot 1))=(0,0)$
The slope of the line is $f^{\prime}(0)=\cos \left(\pi e^{0}\right) \pi e^{0}=\cos (\pi \cdot 1) \cdot \pi \cdot 1=\cos (\pi) \cdot \pi=-\pi$
By the point-slope formula, the equation for the tangent line is

$$
\begin{aligned}
y-y_{0} & =m\left(x-x_{0}\right) \\
y-0 & =-\pi(x-0) \\
y & =-\pi x
\end{aligned}
$$

Answer: The equation of the tangent line is $y=-\pi x$.
3. (5 points) Two functions $f(x)$ and $g(x)$ are graphed below. Suppose $h(x)=f(g(x))$. Find $h^{\prime}(3)$. Please show your work carefully.

By the chain rule, $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
Thus $h^{\prime}(3)=f^{\prime}(g(3)) g^{\prime}(3)=f^{\prime}(1) \cdot(-1)=\frac{1}{2} \cdot(-1)=-\frac{1}{2}$

