1. In this problem $y=x \sin (x)$.
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
(c) $\frac{d^{3} y}{d x^{3}}=$
2. Find the derivative of $y=\tan \left(3 x^{2}+x\right)$.
3. Find the derivative of $y=\cos \left(\frac{1}{x}\right)$.
4. Information about functions $f(x), g(x)$ and their derivatives is given in the table below. If $h(x)=f(g(x))$, find $h^{\prime}(3)$.

x	0	1	2	3	4	5
$f(x)$	-4	-2	0	1	1	0
$f^{\prime}(x)$	2	1	1	3	5	-1
$g(x)$	10	9	7	4	0	-4
$g^{\prime}(x)$	0	-0.5	-1	-3	-4	-4

\qquad

1. In this problem $y=x e^{x}$.
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
(c) $\frac{d^{3} y}{d x^{3}}=$
2. Find the derivative of $y=\sin (\sqrt{x})$.
3. Find the derivative of $y=\tan \left(3 x^{3}+x\right)$.
4. Information about functions $f(x), g(x)$ and their derivatives is given in the table below. If $h(x)=f(g(x))$, find $h^{\prime}(4)$.

x	0	1	2	3	4	5
$f(x)$	-4	-2	0	1	1	0
$f^{\prime}(x)$	2	1	1	3	0.5	-1
$g(x)$	10	9	7	4	0	-4
$g^{\prime}(x)$	0	-0.5	-1	-3	-4	-4

1. In this problem $y=\frac{2}{x^{2}}$.
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
(c) $\frac{d^{3} y}{d x^{3}}=$
2. Find the derivative of $y=\cos \left(x e^{x}\right)$.
3. Find the derivative of $y=\cot \left(3 x^{2}+x\right)$.
4. Information about functions $f(x), g(x)$ and their derivatives is given in the table below. If $h(x)=f(g(x))$, find $h^{\prime}(0)$.

x	0	1	2	3	4	5
$f(x)$	-4	-2	0	1	1	0
$f^{\prime}(x)$	2	1	1	3	0.5	-1
$g(x)$	5	9	7	4	0	-4
$g^{\prime}(x)$	3	-0.5	-1	-3	-4	-4

\qquad

1. In this problem $y=x^{2}+\frac{1}{x}$.
(a) $\frac{d y}{d x}=$
(b) $\frac{d^{2} y}{d x^{2}}=$
(c) $\frac{d^{3} y}{d x^{3}}=$
2. Find the derivative of $y=\sin \left(x^{2} e^{x}\right)$.
3. Find the derivative of $y=\tan \left(\frac{1}{x^{2}}\right)$.
4. Information about functions $f(x), g(x)$ and their derivatives is given in the table below. If $h(x)=f(g(x))$, find $h^{\prime}(1)$.

x	0	1	2	3	4	5
$f(x)$	-4	-2	0	1	1	0
$f^{\prime}(x)$	2	1	1	3	6	-1
$g(x)$	10	4	7	4	0	-4
$g^{\prime}(x)$	0	-0.5	-1	-3	-4	-4

