1. In this problem $y = x \sin(x)$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

(c)
$$\frac{d^3y}{dx^3} =$$

2. Find the derivative of $y = \tan(3x^2 + x)$.

3. Find the derivative of $y = \cos\left(\frac{1}{x}\right)$.

4. Information about functions f(x), g(x) and their derivatives is given in the table below. If h(x) = f(g(x)), find h'(3).

x	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	0
f'(x)	2	1	1	3	5	-1
g(x)	10	9	7	4	0	-4
g'(x)	0	-0.5	-1	-3	-4	-4

1. In this problem $y = xe^x$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

(c)
$$\frac{d^3y}{dx^3} =$$

2. Find the derivative of $y = \sin(\sqrt{x})$.

3. Find the derivative of $y = \tan(3x^3 + x)$.

4. Information about functions f(x), g(x) and their derivatives is given in the table below. If h(x) = f(g(x)), find h'(4).

x	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	0
f'(x)	2	1	1	3	0.5	-1
g(x)	10	9	7	4	0	-4
g'(x)	0	-0.5	-1	-3	-4	-4

Name:

1. In this problem $y = \frac{2}{x^2}$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

(c)
$$\frac{d^3y}{dx^3} =$$

2. Find the derivative of $y = \cos(xe^x)$.

3. Find the derivative of $y = \cot(3x^2 + x)$.

4. Information about functions f(x), g(x) and their derivatives is given in the table below. If h(x) = f(g(x)), find h'(0).

x	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	0
f'(x)	2	1	1	3	0.5	-1
g(x)	5	9	7	4	0	-4
g'(x)	3	-0.5	-1	-3	-4	-4

Name: _____

1. In this problem $y = x^2 + \frac{1}{x}$.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

(c)
$$\frac{d^3y}{dx^3} =$$

2. Find the derivative of $y = \sin(x^2 e^x)$.

3. Find the derivative of $y = \tan\left(\frac{1}{x^2}\right)$.

4. Information about functions f(x), g(x) and their derivatives is given in the table below. If h(x) = f(g(x)), find h'(1).

x	0	1	2	3	4	5
f(x)	-4	-2	0	1	1	0
f'(x)	2	1	1	3	6	-1
g(x)	10	4	7	4	0	-4
g'(x)	0	-0.5	-1	-3	-4	-4