\qquad

1. Find the indicated derivatives.
(a) Use the quotient rule as your first step to find:

$$
\frac{d}{d x}\left[\frac{x^{5}-1}{3}\right]=\frac{\left(5 x^{4}-0\right) \cdot 3-\left(x^{5}-1\right) \cdot 0}{3^{2}}=\frac{5 x^{4} \cdot 3}{9}=\frac{5 x^{4}}{3}
$$

(b) Use the constant multiple rule as your first step to find:

$$
\frac{d}{d x}\left[\frac{x^{5}-1}{3}\right]=\frac{d}{d x}\left[\frac{1}{3}\left(x^{5}-1\right)\right]=\frac{1}{3} \cdot \frac{d}{d x}\left[x^{5}-1\right]=\frac{1}{3}\left(5 x^{4}-0\right)=\frac{5 x^{4}}{3}
$$

2. Suppose $z=e^{w} \cos (w)$. Find: $z^{\prime}=e^{w} \cos (w)+e^{w}(-\sin (w))=e^{w} \cos (w)-e^{w} \sin (w)$
3. Suppose $y=\frac{\sec (x)}{x^{2}+1}$. Find: $\frac{d y}{d x}=\frac{\sec (x) \tan (x)\left(x^{2}+1\right)-\sec (x)(2 x+0)}{\left(x^{2}+1\right)^{2}}=\frac{\sec (x)\left(\tan (x)\left(x^{2}+1\right)-2 x\right)}{\left(x^{2}+1\right)^{2}}$
4. Two functions $f(x)$ and $g(x)$ are graphed below. Suppose $h(x)=f(x) g(x)$. Find $h^{\prime}(3)$.

By product rule, $h^{\prime}(3)=f^{\prime}(3) g(3)+f(3) g^{\prime}(3)=\frac{1}{2} \cdot 1+2 \cdot(-1)=\frac{1}{2}-2=-\frac{3}{2}$
\qquad

1. Find the indicated derivatives.
(a) Use the constant multiple rule as your first step to find:

$$
\frac{d}{d x}\left[\frac{x^{2}+x}{5}\right]=\frac{d}{d x}\left[\frac{1}{5}\left(x^{2}+x\right)\right]=\frac{1}{5} \cdot \frac{d}{d x}\left[x^{2}+x\right]=\frac{1}{5}(2 x+1)=\frac{2 x+1}{5}
$$

(b) Use the quotient rule as your first step to find:

$$
\frac{d}{d x}\left[\frac{x^{2}+x}{5}\right]=\frac{(2 x+1) \cdot 5-\left(x^{2}+x\right) \cdot 0}{5^{2}}=\frac{(2 x+1) \cdot 5}{25}=\frac{2 x+1}{5}
$$

2. Suppose $y=\tan (x) e^{x}$. Find: $y^{\prime}=\sec ^{2}(x) e^{x}+\tan (x) e^{x}$
3. Suppose $z=w^{5} \sin (w)+\sec (w)$. Find: $\frac{d z}{d w}=5 w^{4} \sin (w)+w^{5} \cos (w)+\sec (w) \tan (w)$
4. Two functions $f(x)$ and $g(x)$ are graphed below. Suppose $h(x)=\frac{f(x)}{g(x)}$. Find $h^{\prime}(3)$.

By quotient rule, $h^{\prime}(3)=\frac{f^{\prime}(3) g(3)-f(3) g^{\prime}(3)}{g(3)^{2}}=\frac{1 \cdot 2-(-1) \cdot \frac{1}{2}}{2^{2}}=\frac{2+\frac{1}{2}}{4}=\frac{\frac{5}{2}}{4}=\frac{5}{8}$

