$\qquad$

1. Find the indicated derivatives.
(a) Use the quotient rule as your first step to find:

$$
\frac{d}{d x}\left[\frac{x^{5}-1}{3}\right]=
$$

(b) Use the constant multiple rule as your first step to find:

$$
\frac{d}{d x}\left[\frac{x^{5}-1}{3}\right]=
$$

2. Suppose $z=e^{w} \cos (w)$. Find: $z^{\prime}=$
3. Suppose $y=\frac{\sec (x)}{x^{2}+1}$. Find: $\frac{d y}{d x}=$
4. Two functions $f(x)$ and $g(x)$ are graphed below. Suppose $h(x)=f(x) g(x)$. Find $h^{\prime}(3)$.


$\qquad$
5. Find the indicated derivatives.
(a) Use the constant multiple rule as your first step to find:

$$
\frac{d}{d x}\left[\frac{x^{2}+x}{5}\right]=
$$

(b) Use the quotient rule as your first step to find:

$$
\frac{d}{d x}\left[\frac{x^{2}+x}{5}\right]=
$$

2. Suppose $y=\tan (x) e^{x}$. Find: $y^{\prime}=$
3. Suppose $z=w^{5} \sin (w)+\sec (w)$. Find: $\frac{d z}{d w}=$
4. Two functions $f(x)$ and $g(x)$ are graphed below. Suppose $h(x)=\frac{f(x)}{g(x)}$. Find $h^{\prime}(3)$.


