1. Find the derivative of $f(x) = x + \cos(x) - \sec(x)$.

2. Find the derivative of $w = e^z + z^3 \sin(z)$.

3. Find the derivative of $g(x) = \frac{4x^3 - x + 2}{3x + 1}$.

- 4. This problem asks you to find the derivative of $\frac{x^5-1}{3}$ in two ways.
 - (a) Use the **constant multiple rule** as your first step:

$$D_x \left[\frac{x^5 - 1}{3} \right] =$$

(b) Use the **quotient rule** as your first step:

$$D_x \left[\frac{x^5 - 1}{3} \right] =$$

1. Find the derivative of $f(x) = x^3 + \tan(x) + \sin(x)$.

2. Suppose $y = \frac{\sec(x)}{x^2 + 1}$. Find: $\frac{dy}{dx} =$

3. Suppose $z = e^w \cos(w)$. Find: z' =

- 4. This problem asks you to find the derivative of $\frac{x^5-1}{3}$ in two ways.
 - (a) Use the **quotient rule** as your first step:

$$D_x \left[\frac{x^5 - 1}{3} \right] =$$

(b) Use the **constant multiple rule** as your first step:

$$D_x \left\lceil \frac{x^5 - 1}{3} \right\rceil =$$