1. (4 pts.) State the intervals on which the function graphed below is differentiable.

Notice that $f^{\prime}(-3)$ is not defined as the tangent at $x=-3$ is vertical. Also $f^{\prime}(2)$ is not defined because there is a cusp at $x=2$ (so no tangent line there). At all other values of x there is a non-vertical tangent.
Answer:
$f(x)$ is differentiable on $(-7,-3) \cup(-3,2) \cup(2,7)$
2. (8 pts.) Consider the functions $f(x)=x^{2}$ and $g(x)=x^{3}$. Find all x for which the tangent line to the graph of $y=f(x)$ at $(x, f(x))$ is parallel to the tangent line to the graph of $y=g(x)$ at $(x, g(x))$.
To find x we need to solve the equation
$f^{\prime}(x)=g^{\prime}(x)$. Now, $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=3 x^{2}$, so we need to solve

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(x) \\
2 x & =3 x^{2} \\
2 x-3 x^{2} & =0 \\
x(2-3 x) & =0
\end{aligned}
$$

The solutions are $x=0$ and $x=2 / 3$.
So the two graphs have the same slope when $x=0$ and also when $x=2 / 3$.

This is supported by the graphs on the right, which were done with a graphing utility.

3. (8 pts.) The graph of a function $f(x)$ is shown below.

Using the same coordinate axis, sketch the graph of its derivative $f^{\prime}(x)$

\qquad

1. (4 pts.) State the intervals on which the function graphed below is differentiable.

Notice that $f^{\prime}(3)$ is not defined as the tangent at $x=3$ is vertical. Also $f^{\prime}(-2)$ is not defined because there is a cusp at $x=-2$ (so no tangent line there). At all other values of x there is a non-vertical tangent.

Answer:

$f(x)$ is differentiable on $(-7,-2) \cup(-2,3) \cup(3,7)$
2. (8 pts.) Consider the functions $f(x)=x^{2}$ and $g(x)=4 \sqrt{x}$. Find all x for which the tangent line to the graph of $y=f(x)$ at $(x, f(x))$ is parallel to the tangent line to the graph of $y=g(x)$ at $(x, g(x))$.

To find x we need to solve the equation $f^{\prime}(x)=g^{\prime}(x)$.
Now, $f^{\prime}(x)=2 x$ and because $g(x)=4 x^{1 / 2}$, we get $g^{\prime}(x)=4 \frac{1}{2} x^{-1 / 2}=\frac{4}{2 x^{1 / 2}}=\frac{4}{2 \sqrt{x}}=\frac{2}{\sqrt{x}}$.

Now let's solve $f^{\prime}(x)=g^{\prime}(x)$.

$$
\begin{aligned}
2 x & =\frac{2}{\sqrt{x}} \\
x & =\frac{1}{\sqrt{x}} \\
x \sqrt{x} & =1 \\
x^{1} x^{1 / 2} & =1 \\
x^{1+1 / 2} & =1 \\
x^{3 / 2} & =1 \\
\left(x^{3 / 2}\right)^{2 / 3} & =1^{2 / 3} \\
x & =1
\end{aligned}
$$

So the two graphs have the same slope when $x=1$.
This is supported by the graphs below, which were done with a graphing utility. (Not that that was available to you on the quiz!) Note that the slopes do appear to be equal at $x=1$.

3. (8 pts.) The graph of a function $f(x)$ is shown below.

Using the same coordinate axis, sketch the graph of its derivative $f^{\prime}(x)$

