Name: _

I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)

- 1. This problem concerns the graph of the equation $e^y = 2\cos(2x)$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$.

(b) Use your answer from part (a) to find the slope of the tangent line to the graph at the point $\left(\frac{\pi}{6}, 0\right)$.

I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)

MATH 200 – QUIZ 7 Å October 11, 2012

1. This problem concerns the graph of the equation $e^x = 2\cos(2y)$.

(a) Use implicit differentiation to find $\frac{dy}{dx}$.

(b) Use your answer from part (a) to find the slope of the tangent line to the graph at the point $\left(0, \frac{\pi}{6}\right)$.

- 1. This problem concerns the graph of the equation $y \cos(y) = x^2$.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$.

(b) Use your answer from part (a) to find the slope of the tangent line to the graph at the point $(\sqrt{\pi}, -\pi)$.

I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)

Name:

MATH 200 – QUIZ 7 $\overset{\bullet}{W}$ October 11, 2012

1. This problem concerns the graph of the equation $x \sin(y) = y$.

(a) Use implicit differentiation to find $\frac{dy}{dx}$.

(b) Use your answer from part (a) to find the slope of the tangent line to the graph at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.