Directions: Find the derivatives of the given functions. Perform any "obvious" simplifications.

1. $f(x)=4 x^{5}-3 x^{2}+2 x+1$

$$
f^{\prime}(x)=4 \cdot 5 x^{4}-3 \cdot 2 x^{1}+2+0=20 x^{4}-6 x+2
$$

2. $g(x)=\frac{x^{3}}{3}+\pi^{3}=\frac{1}{3} x^{3}+\pi^{3}$

$$
g^{\prime}(x)=\frac{1}{3} 3 x^{2}+0=x^{2}
$$

3. $y=\frac{1}{5 \sqrt[3]{x}}=\frac{1}{5} \frac{1}{x^{1 / 3}}=\frac{1}{5} x^{-1 / 3} \quad y^{\prime}=\frac{1}{5}\left(-\frac{1}{3} x^{-1 / 3-1}\right)=\frac{-1}{15} x^{-4 / 3}=\frac{-1}{15 x^{4 / 3}}=-\frac{1}{15 \sqrt[3]{x^{4}}}$
4. $g(x)=\frac{2}{x}=2 x^{-1}$

$$
g^{\prime}(x)=2\left(-x^{-1-1}\right)=-2 x^{-2}=-\frac{2}{x^{2}}
$$

5. $\quad h(x)=\frac{2+\sqrt{2}}{x}=(2+\sqrt{2}) x^{-1}$

$$
h^{\prime}(x)=(2+\sqrt{2})\left(-x^{-1-1}\right)=-(2+\sqrt{2}) x^{-2}=-\frac{2+\sqrt{2}}{x^{2}}
$$

Directions: Find the derivatives of the given functions. Perform any "obvious" simplifications.

1. $f(x)=4 x^{4}-2 x^{3}-x+1$
$f^{\prime}(x)=4 \cdot 4 x^{3}-2 \cdot 3 x^{2}-1+0=16 x^{3}-6 x^{2}-1$
2. $y=\frac{3}{x^{3}}=3 x^{-3}$

$$
y^{\prime}=3 \cdot\left(-3 x^{-3-1}\right)=-9 x^{-4}=-\frac{9}{x^{4}}
$$

3. $\quad f(x)=\sqrt[3]{x}^{2}+\sqrt[3]{2}^{2}=x^{2 / 3}+\sqrt[3]{2}^{2}$

$$
f^{\prime}(x)=\frac{2}{3} x^{2 / 3-1}+0=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 x^{1 / 3}}=\frac{2}{3 \sqrt[3]{x}}
$$

4. $\quad g(x)=\frac{1}{2 x^{2}}=\frac{1}{2} x^{-2}$

$$
g^{\prime}(x)=\frac{1}{2}\left(-2 x^{-3}\right)=-x^{-3}=-\frac{1}{x^{3}}
$$

5. $\quad h(x)=\frac{2+\pi}{x}=(2+\pi) x^{-1}$

$$
h^{\prime}(x)=(2+\pi)\left(-x^{-1-1}\right)=-(2+\pi) x^{-2}=-\frac{2+\pi}{x^{2}}
$$

