Instructions: Show work and put a box around your final answer.

1. Suppose $f(x)=\sqrt[3]{x}^{2}$.
(a) $f^{\prime}(x)=$
(b) Find the equation of the tangent line to the graph of $f(x)$ at the point $(8, f(8))$.
2. Suppose $g(t)=\frac{t^{2}}{t+1}$.
(a) $g^{\prime}(\mathrm{t})=$
(b) An object moving on a straight line is $g(t)$ feet from its starting position at time t seconds. Find its velocity at time $t=2$ seconds. (Include units in your final answer.)

Name: \qquad
Instructions: Show work and put a box around your final answer.

1. Suppose $f(x)=(3 x+4) e^{x}$.
(a) $f^{\prime}(x)=$
(b) Find the equation of the tangent line to the graph of $f(x)$ at the point $(0, f(0))$.
2. Suppose $g(t)=t^{2}+\sqrt{t}$.
(a) $g^{\prime}(\mathrm{t})=$
(b) An object moving on a straight line is $g(t)$ feet from its starting point at time t seconds. Find its velocity at time $t=9$ seconds. (Include units in your final answer.)
3. Suppose $f(x)=\frac{e^{x}}{x-1}$.
(a) $f^{\prime}(x)=$
(b) Find the equation of the tangent line to the graph of $f(x)$ at the point $(0, f(0))$.
4. Suppose $g(t)=\sqrt{t}+t^{2}+3$.
(a) $g^{\prime}(\mathrm{t})=$
(b) An object moving on a straight line is $g(t)$ feet from its starting point at time t seconds.

Find its velocity at time $t=4$ seconds. (Include units in your final answer.)

Name: \qquad
Instructions: Show work and put a box around your final answer.

1. Suppose $f(x)=5 x e^{x}+2$.
(a) $f^{\prime}(x)=$
(b) Find the equation of the tangent line to the graph of $f(x)$ at the point $(0, f(0))$.
2. Suppose $g(t)=t+\sqrt[3]{t}+1$.
(a) $g^{\prime}(t)=$
(b) An object moving on a straight line is $g(t)$ feet from its starting point at time t seconds. Find its velocity at time $t=8$ seconds. (Include units in your final answer.)
