1. (10 points) Suppose $f(x)$ is a function for which $f^{\prime}(x)=3 x^{2}+4$ and $f(2)=7$. Find $f(x)$.
2. (10 points) Suppose f and g are functions for which $\int_{0}^{5} f(x) d x=3, \int_{5}^{7} f(x) d x=-2$, and $\int_{0}^{7} g(x) d x=6$. Find $\int_{0}^{7}(f(x)-3 g(x)) d x$
3. (6 points) Find the indicated (shaded) area below the graph of $y=\frac{1}{1+x^{2}}$.

4. (24 points) Use the fundamental theorem of calculus to find the following definite integrals.
(a) $\int_{-2}^{2}\left(x^{3}-x\right) d x=$
(b) $\int_{1}^{e} \frac{2}{x} d x=$
(c) $\int_{0}^{1}(1+\sqrt{x}) d x=$
(d) $\int_{\pi}^{2 \pi} \sin (x) d x=$
