Name:
Directions: Find the limits. Show all steps. Simplify your answer.

1. (8 points) Answer the following questions about the function $y=f(x)$ graphed below.

(a) $\lim _{x \rightarrow-\infty} f(x)=3$
(b) $\lim _{x \rightarrow \infty} f(x)=5$
(c) $\lim _{x \rightarrow \infty} \frac{1}{f(x)}=\frac{\lim _{x \rightarrow \infty} 1}{\lim _{x \rightarrow \infty} f(x)}=\frac{1}{5}$
(d) $\lim _{x \rightarrow \infty} f\left(\frac{1}{x}\right)=f\left(\lim _{x \rightarrow \infty} \frac{1}{x}\right)=f(0)=6$
(e) $\lim _{x \rightarrow 4^{-}} \frac{1}{f(x)}=\infty\binom{$ Bottom approaches 0,}{ and is positive }
(f) $\lim _{x \rightarrow 4^{+}} \frac{1}{f(x)}=\infty\binom{$ Bottom approaches 0,}{ and is positive }
(g) $\lim _{x \rightarrow 0} \frac{x}{f(x)}=\frac{\lim _{x \rightarrow 0} x}{\lim _{x \rightarrow 0} f(x)}=\frac{0}{6}=0$
(h) $\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=\infty\left(\begin{array}{l}\text { Top approaches } 6 . \\ \text { Bottom approaches } 0, \\ \text { and is positive }\end{array}\right)$
2. (4 points) $\lim _{x \rightarrow-\infty} e^{x}=0$
(From graph of $y=e^{x}$.)

3. (4 points) $\lim _{x \rightarrow 5^{+}} \frac{x^{2}+2 x+1}{-x^{2}+4 x+5}=\lim _{x \rightarrow 5^{+}} \frac{(x+1)(x+1)}{(-x+5)(x+1)}=\lim _{x \rightarrow 5^{+}} \frac{x+1}{-x+5}=-\infty\left(\begin{array}{l}\text { Top approaches } 6 . \\ \text { Bottom approaches } 0, \\ \text { and is negative }\end{array}\right)$
4. (4 points) $\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{-x^{2}+4 x+5}=\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{-x^{2}+4 x+5} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1+\frac{2}{x}+\frac{1}{x^{2}}}{-1+\frac{4}{x}+\frac{5}{x^{2}}}=\frac{1+0+0}{-1-0}=\boxed{-1}$

Name:
Directions: Find the limits. Show all steps. Simplify your answer.

1. (8 points) Answer the following questions about the function $y=f(x)$ graphed below.

(a) $\lim _{x \rightarrow-\infty} f(x)=3$
(b) $\lim _{x \rightarrow \infty} f(x)=5$
(c) $\lim _{x \rightarrow 4^{-}} \frac{1}{f(x)}=\infty\binom{$ Bottom approaches 0,}{ and is positive }
(d) $\lim _{x \rightarrow 4^{+}} \frac{1}{f(x)}=\infty\binom{$ Bottom approaches 0,}{ and is positive }
(e) $\lim _{x \rightarrow-\infty} \frac{1}{f(x)}=\frac{\lim _{x \rightarrow-\infty} 1}{\lim _{x \rightarrow-\infty} f(x)}=\frac{1}{3}$
(f) $\lim _{x \rightarrow \infty} f\left(\frac{1}{x}+4\right)=f\left(\lim _{x \rightarrow \infty}\left(\frac{1}{x}+4\right)\right)=f(0+4)=f(4)=0$
(g) $\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=-\infty\left(\begin{array}{l}\text { Top approaches } 6 . \\ \text { Bottom approaches 0, } \\ \text { and is negative }\end{array}\right)$ (h) $\lim _{x \rightarrow 0} \frac{x}{f(x)}=\frac{\lim _{x \rightarrow 0} x}{\lim _{x \rightarrow 0} f(x)}=\frac{0}{6}=0$
2. (4 points) $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$
(From graph of $y=\ln (x)$.)

3. (4 points) $\lim _{x \rightarrow \infty} \frac{x^{2}+5 x+6}{x^{2}-9}=\lim _{x \rightarrow \infty} \frac{x^{2}+5 x+6}{x^{2}-9} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1+\frac{5}{x}+\frac{6}{x^{2}}}{1-\frac{9}{x^{2}}}=\frac{1+0+0}{1-0}=1$
4. (4 points) $\quad \lim _{x \rightarrow 3^{+}} \frac{x^{2}+5 x+6}{x^{2}-9}=\lim _{x \rightarrow 3^{+}} \frac{(x+2)(x+3)}{(x-3)(x+3)}=\lim _{x \rightarrow 3^{+}} \frac{x+2}{x-3}=\infty\left(\begin{array}{l}\text { Top approaches } 5 . \\ \text { Bottom approaches } 0, \\ \text { and is positive }\end{array}\right)$
