1. $\lim _{x \rightarrow \frac{\pi}{4}} \log _{2}(2 \sin (x))=$
2. $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{2-2 x}=$
3. $\lim _{x \rightarrow 0} \frac{3-3 \cos (x)}{\cos (x)-1}=$
4. This problem concerns the function $f(x)= \begin{cases}c x^{2}+2 x, & \text { if } x<2 \\ x^{2}-c x, & \text { if } x \geq 2\end{cases}$

Find the value(s) of c such that f will be continuous at all x. Show and explain your work.
\qquad

1. $\lim _{x \rightarrow \frac{\pi}{6}} \log _{2}(\sin (x))=$
2. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (x)-1}{2-2 \sin (x)}=$
3. $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{2-2 x}=$
4. This problem concerns the function $f(x)= \begin{cases}c x^{2}+2 x, & \text { if } x<2 \\ x^{2}-c x, & \text { if } x \geq 2\end{cases}$

Find the value(s) of c such that f will be continuous at all x. Show and explain your work.

