Directions. Find the limits with L'Hôpital's rule. In each case, state what indeterminate form is involved.

1.
$$\lim_{x \to 0} \frac{2 + 4 \ln |x|}{x + 3 \ln |x|} =$$

2.
$$\lim_{x \to \infty} x \tan\left(\frac{1}{x}\right) =$$

3. $\lim_{x \to 0^+} \left(\ln \left(\sin(x) \right) - \ln(x) \right) =$

4. Given the function f(x) graphed below, find $\lim_{x \to 2} \frac{f(x)}{5x^2 - 20}$

Directions. Find the limits with L'Hôpital's rule. In each case, state what indeterminate form is involved.

1. $\lim_{x \to \infty} \frac{\ln |x|}{x} =$

2. $\lim_{x \to \pi} (x - \pi) \tan(x/2) =$

3.
$$\lim_{x \to \infty} \left(\ln \left(x^2 - 1 \right) - 2 \ln(x) \right) =$$

4. Given the function g(x) graphed below, find $\lim_{x \to 2} \frac{\ln |5x - 9|}{g(x)}$

