\qquad

1. Consider $f(x)=x+\sin (x)$ on $[0,2 \pi]$. Find all numbers c in $(0,2 \pi)$ guaranteed by the mean value theorem.

We seek all values x for which

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f(2 \pi)-f(0)}{2 \pi-0} \\
1+\cos (x) & =\frac{(2 \pi+\sin (2 \pi))-(0+\sin (0))}{2 \pi} \\
1+\cos (x) & =\frac{(2 \pi+0)-(0+0)}{2 \pi} \\
1+\cos (x) & =\frac{2 \pi}{2 \pi} \\
\cos (x) & =0
\end{aligned}
$$

The values of x in $(0,2 \pi)$ for which $\cos (x)=0$ are $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$.
Answer: $c=\frac{\pi}{2}$ and $c=\frac{3 \pi}{2}$
2. Find the linear approximation $L(x)$ for the function $f(x)=x+\frac{3}{x}$ at $x=3$.

The derivative is $f^{\prime}(x)=1-\frac{3}{x^{2}}$.

$$
\begin{aligned}
L(x) & =f(3)+f^{\prime}(3)(x-3) \\
& =3+\frac{3}{3}+\left(1-\frac{3}{3^{2}}\right)(x-3) \\
& =4+\left(1-\frac{1}{3}\right)(x-3) \\
& =4+\frac{2}{3}(x-3) \\
& =4+\frac{2}{3} x-2 \\
& =\frac{2}{3} x+2
\end{aligned}
$$

Answer: $L(x)=\frac{2}{3} x+2$
\qquad

1. Consider $f(x)=2+\cos (x)$ on $[0,2 \pi]$. Find all numbers c in $(0,2 \pi)$ guaranteed by the mean value theorem.

We seek all values x for which

$$
\begin{aligned}
f^{\prime}(x) & =\frac{f(2 \pi)-f(0)}{2 \pi-0} \\
0-\sin (x) & =\frac{(2+\cos (2 \pi))-(2+\cos (0))}{2 \pi} \\
-\sin (x) & =\frac{0}{2 \pi} \\
-\sin (x) & =0
\end{aligned}
$$

The only value of x in $(0,2 \pi)$ for which $-\sin (x)=0$ is $x=\pi$.
Answer: $c=\pi$
2. Find the linear approximation $L(x)$ for the function $f(x)=2 e^{x}-x$ at $x=\ln (3)$.

The derivative is $f^{\prime}(x)=2 e^{x}-1$.

$$
\begin{aligned}
L(x) & =f(\ln (3))+f^{\prime}(\ln (3))(x-0) \\
& =2 e^{\ln (3)}-\ln (3)+\left(2 e^{\ln (3)}-1\right)(x-\ln (3)) \\
& =2 \cdot 3-\ln (3)+(2 \cdot 3-1)(x-\ln (3)) \\
& =6-\ln (3)+5(x-\ln (3)) \\
& =6-\ln (3)+5 x-5 \ln (3) \\
& =5 x+6-6 \ln (3)
\end{aligned}
$$

Answer: $L(x)=5 x+6-6 \ln (3)$

