1. Consider $f(x)=x^{2}+2 x$ on $[0,5]$. Find all numbers c in $(0,5)$ guaranteed by the mean value theorem.
2. Suppose $f(x)$ is a function, and $f(50)=-20$ and $f^{\prime}(50)=7$. Based on this information, find the linear approximation $L(x)$ for $f(x)$ at 50 . Then use it to find an approximate value of $f(51)$.
3. Consider $f(x)=4-x^{2}$ on $[1,2]$. Find all numbers c in $(1,2)$ guaranteed by the mean value theorem.
4. Suppose $f(x)$ is a function, and $f(11)=10$ and $f^{\prime}(11)=-2$. Based on this information, find the linear approximation $L(x)$ for $f(x)$ at 11. Then use it to approximate value of $f(10)$.
5. Consider $f(x)=x^{2}+2 x-3$ on $[-3,0]$. Find all numbers c in $(-3,0)$ guaranteed by the mean value theorem.
6. Suppose $f(x)$ is a function, and $f(90)=-10$ and $f^{\prime}(90)=7$. Based on this information, find the linear approximation $L(x)$ for $f(x)$ at 90 . Then use it to find an approximate value of $f(91)$.
7. Consider $f(x)=x^{3}-2 x+4$ on $[0,2]$. Find all numbers c in $(0,2)$ guaranteed by the mean value theorem.
8. Suppose $f(x)$ is a function, and $f(50)=-20$ and $f^{\prime}(50)=7$. Based on this information, find the linear approximation $L(x)$ for $f(x)$ at 50 . Then use it to find an approximate value of $f(51)$.
