Name: ____

1. (10 points) Find the global extrema of the function $f(x) = x - 2\sqrt{x}$ on the closed interval [0,9].

Notice that $f(x) = x - 2x^{1/2}$, so $f'(x) = 1 - 2 \cdot \frac{1}{2}x^{-1/2} = 1 - \frac{1}{\sqrt{x}}$. To find the critical points, solve f'(x) = 0.

$$1 - \frac{1}{\sqrt{x}} = 0$$

$$1 = \frac{1}{\sqrt{x}}$$

$$\sqrt{x} = 1$$

$$\sqrt{x^2} = 1^2$$

$$x = 1$$

Notice that the only critical point x = 1 does happen to be in the interval [0, 4].

 $f(0) = 0 - 2\sqrt{0} = 0$ $f(1) = 1 - 2\sqrt{1} = -1$ $f(9) = 9 - 2\sqrt{9} = 3$

Conclusion: The global minimum is -1, and it happens at x = 1. The global maximum is 3, and it happens at x = 9.

2. (10 points) Find the global extrema of the function $f(x) = \sin(x) - \frac{x}{2}$ on the open interval $\left(0, \frac{\pi}{2}\right)$. First find the critical points in the interval: $f'(x) = \cos(x) - \frac{1}{2}$ Set this equal to zero: $\cos(x) - \frac{1}{2} = 0$ We get $\cos(x) = \frac{1}{2}$, so the critical point is $x = \frac{\pi}{3}$. (This is the only value of x in $\left(0, \frac{\pi}{2}\right)$ for which $\cos(x) = \frac{1}{2}$.) As there is only one critical point in the interval, we just need to check if it gives a local max or min. For this we will use the second derivative test: $f''(x) = -\sin(x)$ $f''\left(\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} < 0$. Therefore f has a local maximum at $x = \frac{\pi}{3}$. **Answer:** $f(x) = \sin(x) - \frac{x}{2}$ has a global max of $f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} - \frac{\pi}{6}$ at $x = \frac{\pi}{3}$. No global min. 1. (10 points) Find the global extrema of the function $f(x) = 8\sqrt{x} - x$ on the closed interval [0, 25].

Notice that $f(x) = 8x^{1/2} - x$, so $f'(x) = 8 \cdot \frac{1}{2}x^{-1/2} - 1 = \frac{4}{\sqrt{x}} - 1$. To find the critical points, solve f'(x) = 0.

$$\frac{4}{\sqrt{x}} - 1 = 0$$
$$\frac{4}{\sqrt{x}} = 1$$
$$4 = \sqrt{x}$$
$$4^2 = \sqrt{x^2}$$
$$16 = x$$

Notice that the only critical point x = 16 does happen to be in the interval [0, 25].

 $f(0) = 8\sqrt{0} - 0 = 0$ $f(16) = 8\sqrt{16} - 16 = 16$ $f(25) = 8\sqrt{25} - 25 = 15$

Conclusion: The global minimum is 0, and it happens at x = 0. The global maximum is 16, and it happens at x = 16.

2. (10 points) Find the global extrema of the function $f(x) = \frac{x}{2} + \cos(x)$ on the open interval $\left(0, \frac{\pi}{2}\right)$. First find the critical points in the interval: $f'(x) = \frac{1}{2} - \sin(x)$ Set this equal to zero: $\frac{1}{2} - \sin(x) = 0$ We get $\sin(x) = \frac{1}{2}$, so the critical point is $x = \frac{\pi}{6}$. (This is the only value of x in $\left(0, \frac{\pi}{2}\right)$ for which $\sin(x) = \frac{1}{2}$.) As there is only one critical point the interval, we just need to check if it gives a local max or min. For this we will use the second derivative test: $f''(x) = -\cos(x)$ $f''\left(\frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2} < 0$. Therefore f has a local maximum at $x = \frac{\pi}{6}$. **Answer:** $f(x) = \frac{x}{2} + \cos(x)$ has a global max of $f''\left(\frac{\pi}{6}\right) = \frac{\pi}{12} + \frac{\sqrt{3}}{2}$ at $x = \frac{\pi}{6}$. No global min.