1. (10 points) Find the global extrema of the function $f(x)=x-2 \sqrt{x}$ on the closed interval [0, 9].

Notice that $f(x)=x-2 x^{1 / 2}, \quad$ so $f^{\prime}(x)=1-2 \cdot \frac{1}{2} x^{-1 / 2}=1-\frac{1}{\sqrt{x}}$.
To find the critical points, solve $f^{\prime}(x)=0$.

$$
\begin{aligned}
1-\frac{1}{\sqrt{x}} & =0 \\
1 & =\frac{1}{\sqrt{x}} \\
\sqrt{x} & =1 \\
\sqrt{x}^{2} & =1^{2} \\
x & =1
\end{aligned}
$$

Notice that the only critical point $x=1$ does happen to be in the interval $[0,4]$.
$f(0)=0-2 \sqrt{0}=0$
$f(1)=1-2 \sqrt{1}=-1$
$f(9)=9-2 \sqrt{9}=3$

Conclusion:

The global minimum is -1 , and it happens at $x=1$.
The global maximum is 3 , and it happens at $x=9$.
2. (10 points) Find the global extrema of the function $f(x)=\sin (x)-\frac{x}{2}$ on the open interval $\left(0, \frac{\pi}{2}\right)$.

First find the critical points in the interval: $f^{\prime}(x)=\cos (x)-\frac{1}{2}$
Set this equal to zero: $\cos (x)-\frac{1}{2}=0$
We get $\cos (x)=\frac{1}{2}$, so the critical point is $x=\frac{\pi}{3}$.
(This is the only value of x in $\left(0, \frac{\pi}{2}\right)$ for which $\cos (x)=\frac{1}{2}$.)
As there is only one critical point in the interval, we just need to check if it gives a local max or min. For this we will use the second derivative test:
$f^{\prime \prime}(x)=-\sin (x)$
$f^{\prime \prime}\left(\frac{\pi}{3}\right)=-\sin \left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}<0 . \quad$ Therefore f has a local maximum at $x=\frac{\pi}{3}$.
Answer: $f(x)=\sin (x)-\frac{x}{2}$ has a global max of $f\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}-\frac{\pi}{6}$ at $x=\frac{\pi}{3}$. No global min.
\qquad

1. (10 points) Find the global extrema of the function $f(x)=8 \sqrt{x}-x$ on the closed interval [0, 25].

Notice that $f(x)=8 x^{1 / 2}-x, \quad$ so $f^{\prime}(x)=8 \cdot \frac{1}{2} x^{-1 / 2}-1=\frac{4}{\sqrt{x}}-1$.
To find the critical points, solve $f^{\prime}(x)=0$.

$$
\begin{aligned}
\frac{4}{\sqrt{x}}-1 & =0 \\
\frac{4}{\sqrt{x}} & =1 \\
4 & =\sqrt{x} \\
4^{2} & =\sqrt{x}^{2} \\
16 & =x
\end{aligned}
$$

Notice that the only critical point $x=16$ does happen to be in the interval $[0,25]$.
$f(0)=8 \sqrt{0}-0=0$
$f(16)=8 \sqrt{16}-16=16$
$f(25)=8 \sqrt{25}-25=15$

Conclusion:
The global minimum is 0 , and it happens at $x=0$.
The global maximum is 16 , and it happens at $x=16$.
2. (10 points) Find the global extrema of the function $f(x)=\frac{x}{2}+\cos (x)$ on the open interval $\left(0, \frac{\pi}{2}\right)$.

First find the critical points in the interval: $f^{\prime}(x)=\frac{1}{2}-\sin (x)$
Set this equal to zero: $\frac{1}{2}-\sin (x)=0$
We get $\sin (x)=\frac{1}{2}$, so the critical point is $x=\frac{\pi}{6}$.
(This is the only value of x in $\left(0, \frac{\pi}{2}\right)$ for which $\sin (x)=\frac{1}{2}$.)
As there is only one critical point the interval, we just need to check if it gives a local max or min.
For this we will use the second derivative test:
$f^{\prime \prime}(x)=-\cos (x)$
$f^{\prime \prime}\left(\frac{\pi}{6}\right)=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}<0 . \quad$ Therefore f has a local maximum at $x=\frac{\pi}{6}$.
Answer: $f(x)=\frac{x}{2}+\cos (x)$ has a global max of $f^{\prime \prime}\left(\frac{\pi}{6}\right)=\frac{\pi}{12}+\frac{\sqrt{3}}{2}$ at $x=\frac{\pi}{6}$. No global min.

