1. (10 points) Use the second derivative test to find the local extrema of $f(x)=x^{3}-2 x^{2}+x$.

To find the critical points, look at $f^{\prime}(x)=3 x^{2}-4 x+1=(3 x-1)(x-1)=0$.
We can now read off the critical points as $x=1 / 3$ and $x=1$.
The second derivative is $f^{\prime \prime}(x)=6 x-4$.
At critical point $x=\frac{1}{3}: \quad f^{\prime \prime}\left(\frac{1}{3}\right)=6 \cdot \frac{1}{3}-4=-2<0 \quad f$ has local max of $f\left(\frac{1}{3}\right)=\frac{1}{27}-\frac{2}{9}+\frac{1}{3}=\frac{4}{27} \quad$ at $\quad x=\frac{1}{3}$
At critical point $x=1: \quad f^{\prime \prime}(1)=6 \cdot 1-4=2>0 \quad f$ has local min of $f(1)=1^{3}-2 \cdot 1^{2}+1+1=1$ at $x=1$
2. (10 points) This problem concerns the function $f(x)=x e^{x}$
(a) Find the intervals on which f is increasing/decreasing.
$f^{\prime}(x)=e^{x}+x e^{x}=e^{x}(1+x)$ so critical point is $x=-1$.
Notice $f^{\prime}(x)>0$ whenever $x>-1$, so $f(x)$ increases on $(-1, \infty)$.
Notice $f^{\prime}(x)<0$ whenever $x<-1$, so $f(x)$ decreases on $(-\infty,-1)$.
(b) Find the intervals on which f is concave up/down.
$f^{\prime \prime}(x)=e^{x}+e^{x}+x e^{x}=e^{x}(1+1+x)=e^{x}(2+x)$, which equals 0 at $x=-2$.
Notice $f^{\prime \prime}(x)>0$ whenever $x>-2$, so $f(x)$ concave up on $(-2, \infty)$.
Notice $f^{\prime \prime}(x)<0$ whenever $x<-2$, so $f(x)$ concave down on $(-\infty,-2)$.
(c) List any inflection points.

Concavity changes from down to up at $x=-2$, so inflection point is $(-2, f(-2))=\left(-2,-2 e^{-2}\right)$
$=\left(-2,-\frac{2}{e^{2}}\right)$
(d) Based on this information, sketch the graph of f.

Note: $f(0)=0 e^{0}=0$
Also local min of $f(-1)=-1 \cdot e^{-1}=-\frac{1}{e}$ at $x=-1$
Inflection point: $(-2, f(-2))=\left(-2,-2 e^{-2}\right)=\left(-2,-\frac{2}{e^{2}}\right)$

1. (10 points) Use the second derivative test to find the local extrema of $f(x)=2 x^{3}-3 x^{2}+10$.

To find the critical points, look at $f^{\prime}(x)=6 x^{2}-6 x=6 x(x-1)=0$.
We can now read off the critical points as $x=0$ and $x=1$.
The second derivative is $f^{\prime \prime}(x)=12 x-6$.
At critical point $x=0: \quad f^{\prime \prime}(0)=12 \cdot 0-6=-6<0 \quad f$ has local max of $f(0)=10 \quad$ at $\quad x=0$
At critical point $x=1$: $\quad f^{\prime \prime}(1)=12 \cdot 1-6=6>0$
f has local min of $f(1)=9$ at $x=1$
2. (10 points) This problem concerns the function $f(x)=x e^{x}$
(a) Find the intervals on which f is increasing/decreasing.
$f^{\prime}(x)=e^{x}+x e^{x}=e^{x}(1+x)$ so critical point is $x=-1$.
Notice $f^{\prime}(x)>0$ whenever $x>-1$, so $f(x)$ increases on $(-1, \infty)$.
Notice $f^{\prime}(x)<0$ whenever $x<-1$, so $f(x)$ decreases on $(-\infty,-1)$.
(b) Find the intervals on which f is concave up/down.
$f^{\prime \prime}(x)=e^{x}+e^{x}+x e^{x}=e^{x}(1+1+x)=e^{x}(2+x)$, which equals 0 for $x=-2$.
Notice $f^{\prime \prime}(x)>0$ whenever $x>-2$, so $f(x)$ concave up on $(-2, \infty)$.
Notice $f^{\prime \prime}(x)<0$ whenever $x<-2$, so $f(x)$ concave down on $(-\infty,-2)$.
(c) List any inflection points.

Concavity changes from down to up at $x=-2$, so inflection point is $(-2, f(-2))=\left(-2,-2 e^{-2}\right)$
$=\left(-2,-\frac{2}{e^{2}}\right)$
(d) Based on this information, sketch the graph of f.

Note: $f(0)=0 e^{0}=0$
Also local min of $f(-1)=-1 \cdot e^{-1}=-\frac{1}{e}$ at $x=-1$
Inflection point: $(-2, f(-2))=\left(-2,-2 e^{-2}\right)=\left(-2,-\frac{2}{e^{2}}\right)$

