	Quiz 16 \heartsuit	MATH 200
Name:		November 3, 2021

1. (10 points) Use the second derivative test to find the local extrema of $f(x) = x^3 + 3x^2 + 10$.

- 2. (10 points) The graph of the **derivative** f'(x) of a function f(x) is shown below. Answer the following questions about the function f(x).
 - (a) State the critical points of f.
 - (b) State the interval(s) on which f increases.
 - (c) State the interval(s) on which f decreases.
 - (d) State the intervals on which f is concave up.
 - (e) State the intervals on which f is concave down.

1. (10 points) Use the second derivative test to find the local extrema of $f(x) = xe^{-x}$.

- 2. (10 points) The graph of the **derivative** f'(x) of a function f(x) is shown below. Answer the following questions about the function f(x).
 - (a) State the critical points of f.
 - (b) State the interval(s) on which f increases.
 - (c) State the interval(s) on which f decreases.
 - (d) State the intervals on which f is concave up.
 - (e) State the intervals on which f is concave down.

N	Quiz 16 🖡	MATH 200
Name:		November $3, 2021$

1. (10 points) Use the second derivative test to find the local extrema of $f(x) = xe^x + e^x$.

- 2. (10 points) The graph of the **derivative** f'(x) of a function f(x) is shown below. Answer the following questions about the function f(x).
 - (a) State the critical points of f.
 - (b) State the interval(s) on which f increases.
 - (c) State the interval(s) on which f decreases.
 - (d) State the intervals on which f is concave up.
 - (e) State the intervals on which f is concave down.

Name:	Quiz 16 \diamondsuit	MATH 200
		November 3, 2021

1. (10 points) Use the second derivative test to find the local extrema of $f(x) = e^{x^2 - 2x}$.

- 2. (10 points) The graph of the **derivative** f'(x) of a function f(x) is shown below. Answer the following questions about the function f(x).
 - (a) State the critical points of f.
 - (b) State the interval(s) on which f increases.
 - (c) State the interval(s) on which f decreases.
 - (d) State the intervals on which f is concave up.
 - (e) State the intervals on which f is concave down.

