$\qquad$

1. (10 points) Use the second derivative test to find the local extrema of $f(x)=x^{3}+3 x^{2}+10$.
2. (10 points) The graph of the derivative $f^{\prime}(x)$ of a function $f(x)$ is shown below.

Answer the following questions about the function $f(x)$.
(a) State the critical points of $f$.
(b) State the interval(s) on which $f$ increases.
(c) State the interval(s) on which $f$ decreases.
(d) State the intervals on which $f$ is concave up.

(e) State the intervals on which $f$ is concave down.
$\qquad$

1. (10 points) Use the second derivative test to find the local extrema of $f(x)=x e^{-x}$.
2. (10 points) The graph of the derivative $f^{\prime}(x)$ of a function $f(x)$ is shown below.

Answer the following questions about the function $f(x)$.
(a) State the critical points of $f$.
(b) State the interval(s) on which $f$ increases.
(c) State the interval(s) on which $f$ decreases.
(d) State the intervals on which $f$ is concave up.

(e) State the intervals on which $f$ is concave down.
$\qquad$

1. (10 points) Use the second derivative test to find the local extrema of $f(x)=x e^{x}+e^{x}$.
2. (10 points) The graph of the derivative $f^{\prime}(x)$ of a function $f(x)$ is shown below.

Answer the following questions about the function $f(x)$.
(a) State the critical points of $f$.
(b) State the interval(s) on which $f$ increases.
(c) State the interval(s) on which $f$ decreases.
(d) State the intervals on which $f$ is concave up.

(e) State the intervals on which $f$ is concave down.
$\qquad$

1. (10 points) Use the second derivative test to find the local extrema of $f(x)=e^{x^{2}-2 x}$.
2. (10 points) The graph of the derivative $f^{\prime}(x)$ of a function $f(x)$ is shown below.

Answer the following questions about the function $f(x)$.
(a) State the critical points of $f$.
(b) State the interval(s) on which $f$ increases.
(c) State the interval(s) on which $f$ decreases.
(d) State the intervals on which $f$ is concave up.

(e) State the intervals on which $f$ is concave down.

