\qquad

1. (10 points) This problem concerns the function $f(x)=\frac{x}{1+x^{2}}$.
(a) Find the intervals on which f increases and on which it decreases.

$$
\begin{array}{rlr}
f^{\prime}(x) & =\frac{1 \cdot\left(1+x^{2}\right)-x(0+2 x)}{\left(1+x^{2}\right)^{2}} & \\
& =\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}} & \\
& =\frac{(1-x)(1+x)}{\left(1+x^{2}\right)^{2}} & \longleftarrow \text { critical points are } 1 \text { and }-1
\end{array}
$$

$$
\xrightarrow\left[+++++++++++++++++++++++++++++++++(1]{\stackrel{-1}{\mid}} \stackrel{1}{\stackrel{\mid}{\mid}} \stackrel{\left.x^{2}\right)^{2}}{\stackrel{1}{\mid}}\right.
$$

$$
----------\frac{+++++++++++++++++++++(1+x)}{}
$$

$$
++++++++++++++++++++-----------(1-x)
$$

$$
----------+++++++++------------f^{\prime}(x)=(x+1)(x-1) /\left(1+x^{2}\right)^{2}
$$

Answer: f increases on $(-1,1)$, and decreases on $(-\infty,-1) \cup(1, \infty)$
(b) Use your answer from part (a) to identify the locations (x values) of any local extrema of f.

By the first derivative test, f has a local minimum at $x=-1$ and a local maximum at $x=1$
2. (10 points) The graph of the derivative $f^{\prime}(x)$ of a function f is shown below.
(a) State the critical points of f.
$-2,3$ and 5 since $f^{\prime}(x)=0$ for these x values.
(b) State the interval(s) on which f increases.

On $(-\infty,-2) \&(5, \infty)$ since $f^{\prime}(x)>0$ there.
(c) State the interval(s) on which f decreases.

On $(-2,3) \&(3,5)$ since $f^{\prime}(x)<0$ there
(d) Does f have a local maximum? Where?
 Yes, at $x=-2$ as $f^{\prime}(x)$ goes + to - there.
(e) Does f have a local minimum? Where?

Yes, at $x=5$ as $f^{\prime}(x)$ goes - to + there.
\qquad

1. (10 points) This problem concerns the function $f(x)=\ln \left(x^{2} e^{x}+1\right)$.
(a) Find the intervals on which f increases and on which it decreases.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2 x e^{x}+x^{2} e^{x}+0}{x^{2} e^{x}+1} \\
& =\frac{e^{x}\left(2 x+x^{2}\right)}{x^{2} e^{x}+1}=\frac{e^{x}(2+x) x}{x^{2} e^{x}+1} \quad \longleftarrow \text { critical points are }-2 \text { and } 0
\end{aligned}
$$

(Because $e^{x}>0$ and $x^{2} e^{x}+1>0$ for all x, so the only way to get $f^{\prime}(x)=0$ is $x=-2$ or $x=0$.)

Answer: f increases on $(-\infty,-2) \cup(0, \infty)$, and decreases on $(-2,0)$
(b) Use your answer from part (a) to identify the locations (x values) of any local extrema of f.

By the first derivative test, f has a local maximum at $x=-2$ and a local minimum at $x=0$
2. (10 points) The graph of the derivative $f^{\prime}(x)$ of a function f is shown below.
(a) State the critical points of f.
$-4,-2$ and 3 as $f^{\prime}(x)=0$ for these x values.
(b) State the interval(s) on which f increases.

On $(-4,-2) \&(-2,3)$ since $f^{\prime}(x)>0$ there.
(c) State the interval(s) on which f decreases.

On $(-\infty,-4) \&(3, \infty)$ since $f^{\prime}(x)<0$ there
(d) Does f have a local maximum? Where?

Yes, at $x=3$ as $f^{\prime}(x)$ goes + to - there.
(e) Does f have a local minimum? Where?

Yes, at $x=-4$ as $f^{\prime}(x)$ goes - to + there.

