1. $\sum_{k=1}^{5} (3+2k) =$

2. Suppose that f(x) is a function for which $\int_1^5 f(x) dx = 3$ and $\int_1^7 f(x) dx = -6$. Find $\int_5^7 f(x) dx$.

3. Write the integral that finds area under the curve $y = \sin^2(x)$ from x = 0 to $x = \pi$. Do not compute the integral.

MATH 200 – Quiz 13 🔊 Name: Instructions: Show work and put a box around your final answer. April 18, 2013

1.
$$\sum_{k=1}^{4} (8-2k) =$$

2. Suppose that f(x) is a function for which $\int_2^5 f(x) dx = 4$ and $\int_2^8 f(x) dx = 9$. Find $\int_5^8 f(x) dx$.

3. Write the definite integral that finds area under the curve $y = e^{x} + 2x$ from x = 1 to x = 4. Do not compute the integral.

1. $\sum_{k=1}^{4} (2k-4) =$

2. Suppose that f(x) is a function for which $\int_2^5 f(x) dx = 7$ and $\int_2^8 f(x) dx = 8$. Find $\int_5^8 f(x) dx$.

3. Write the definite integral that finds area under the curve $y = \sqrt{\sin(x)}$ from x = 0 to $x = \pi$. Do not compute the integral.

1.
$$\sum_{k=1}^{4} (k^2 + 2) =$$

2. Suppose that f(x) is a function for which $\int_0^5 f(x) dx = -7$ and $\int_0^6 f(x) dx = 9$. Find $\int_5^6 f(x) dx$.

3. Write the definite integral that finds area under the curve $y = 2e^{\cos x}$ from x = 1 to x = 4. Do not compute the integral.