\qquad

1. Differentiate: $\sec ^{-1}(x) \ln (x)$

$$
D_{x}\left[\sec ^{-1}(x) \ln (x)\right]=\frac{1}{|x| \sqrt{x^{2}-1}} \ln (x)+\sec ^{-1}(x) \frac{1}{x}=\frac{\ln (x)}{|x| \sqrt{x^{2}-1}}+\frac{\sec ^{-1}(x)}{x} \quad \quad \text { (product rule) }
$$

2. Differentiate: $\sin ^{-1}(x \ln (x))$

$$
\begin{array}{r}
D_{x}\left[\sin ^{-1}(x \ln (x))\right]=\frac{1}{\sqrt{1-(x \ln (x))^{2}}} \cdot D_{x}[x \ln (x)]=\frac{1}{\sqrt{1-(x \ln (x))^{2}}} \cdot\left(1 \cdot \ln (x)+x \frac{1}{x}\right) \\
=\frac{\ln (x)+1}{\sqrt{1-(x \ln (x))^{2}}}
\end{array}
$$

3. Find all x for which the tangent line to $f(x)=\tan ^{-1}(x)$ at $(x, f(x))$ has slope $m=\frac{1}{10}$.

$$
\text { We just need to solve the equation } f^{\prime}(x)=\frac{1}{10} \text {, which is } \begin{aligned}
\frac{1}{1+x^{2}} & =\frac{1}{10} \\
1+x^{2} & =10 \\
x^{2} & =9 \\
x & = \pm 3 .
\end{aligned}
$$

Answer: The slope of the tangent to $y=\tan ^{-1}(x)$ is $1 / 10$ at $x=3$ and $x=-3$.
Notice that this seems entirely reasonable when we look at the graph:

4. An object moving on a line is $s(t)=t^{3}-3 t^{2}$ meters from its starting point at time t seconds. Find the object's acceleration when its velocity is -3 meters per second.
The velocity at time t is $s^{\prime}(t)=3 t^{2}-6 t$. Its acceleration at time t is $a(t)=s^{\prime \prime}(t)=6 t-6$ To find at which time t the velocity is -3 meters per second, we solve $s^{\prime}(t)=-3$, which is:

$$
\begin{aligned}
3 t^{2}-6 t & =-3 \\
3 t^{2}-6 t+3 & =0 \\
3\left(t^{2}-2 t+1\right) & =0 \\
3(t-1)(t-1) & =0
\end{aligned}
$$

So the velocity is -3 meters per second at time $t=1$ second. At this time the acceleration is $a(1)=6 \cdot 1-6=0$ meters per second per second
\qquad

1. Differentiate: $x^{5} \tan ^{-1}(x)$

$$
D_{x}\left[x^{5} \tan ^{-1}(x)\right]=5 x^{4} \tan ^{-1}(x)+x^{5} \frac{1}{1+x^{2}}=5 x^{4} \tan ^{-1}(x)+\frac{x^{5}}{1+x^{2}} \quad \quad \quad \text { (product rule) }
$$

2. Differentiate: $\sec ^{-1}(x \ln (x))$

$$
\begin{aligned}
D_{x}\left[\sec ^{-1}(x \ln (x))\right]= & \frac{1}{|x \ln (x)| \sqrt{(x \ln (x))^{2}-1}} \cdot D_{x}[x \ln (x)] \\
& =\frac{1}{|x \ln (x)| \sqrt{(x \ln (x))^{2}-1}} \cdot\left(1 \cdot \ln (x)+x \frac{1}{x}\right)=\frac{\ln (x)+1}{|x \ln (x)| \sqrt{(x \ln (x))^{2}-1}}
\end{aligned}
$$

3. Find all x for which the tangent line to $f(x)=\sin ^{-1}(x)$ at $(x, f(x))$ has slope $m=1$.

$$
\text { We just need to solve the equation } f^{\prime}(x)=1 \text {, which is } \begin{aligned}
\frac{1}{\sqrt{1-x^{2}}} & =1 \\
1 & =\sqrt{1-x^{2}} \\
1^{2} & =\sqrt{1-x^{2}}{ }^{2} \\
1 & =1-x^{2} \\
x^{2} & =0 \\
x & =0
\end{aligned}
$$

Answer: The slope of the tangent to $y=\sin ^{-1}(x)$ is 1 at $x=0$.
This is reasonable when we look at the graph. The tangent at $x=0$ indeed appears to have slope 1 :

4. An object moving on a line is $s(t)=t^{3}-3 t^{2}$ meters from its starting point at time t seconds. Find the object's velocity at the instant its acceleration is 6 meters per second per second.
The velocity at time t is $v(t)=s^{\prime}(t)=3 t^{2}-6 t$. Its acceleration at time t is $a(t)=v^{\prime}(t)=6 t-6$. To find the time t when acceleration is 6 meters per second per second, we solve $a(t)=6$, which is:

$$
\begin{aligned}
6 t-6 & =6 \\
6 t & =12 \\
t & =2
\end{aligned}
$$

So the acceleration is 6 meters per second per second at time $t=2$ seconds. At this time the velocity is $v(2)=3 \cdot 2^{2}-6 \cdot 20$ meters per second

