\qquad
2. $D_{x}\left[\sin ^{-1}\left(x^{3}+3 x\right)\right]=$
3. $D_{x}\left[\sqrt{\tan ^{-1}(x)}\right]=$
4. An object (at point A) rises vertically above a point B on the ground. A camera on the ground (at a point C), 1 mile from B, tracks the object and forms an angle θ of inclination, as illustrated. Find the function giving the rate of change of θ with respect to the object's height z (in miles).

\qquad
1.
$D_{x}\left[\sin ^{-1}(x)\right]=$
2. $D_{x}\left[\sqrt{\sec ^{-1}(x)}\right]=$
3. $D_{x}\left[\tan ^{-1}\left(x^{3}+3 x\right)\right]=$
4. An object (at point A) rises vertically above a point B on the ground. A camera on the ground (at a point C), 1 mile from B, tracks the object and forms an angle θ of inclination, as illustrated. Find the function giving the rate of change of θ with respect to the object's height z (in miles).

