Name: ____

1. $D_x \left[\sec^{-1}(x) \right] =$

$$2. \qquad D_x \left[\sin^{-1} \left(x^3 + 3x \right) \right] =$$

3.
$$D_x\left[\sqrt{\tan^{-1}(x)}\right] =$$

4. An object (at point A) rises vertically above a point B on the ground. A camera on the ground (at a point C), 1 mile from B, tracks the object and forms an angle θ of inclination, as illustrated. Find the function giving the rate of change of θ with respect to the object's height z (in miles).

Name: _____

1. $D_x\left[\sin^{-1}(x)\right] =$

2.
$$D_x\left[\sqrt{\sec^{-1}(x)}\right] =$$

3.
$$D_x \left[\tan^{-1} \left(x^3 + 3x \right) \right] =$$

4. An object (at point A) rises vertically above a point B on the ground. A camera on the ground (at a point C), 1 mile from B, tracks the object and forms an angle θ of inclination, as illustrated. Find the function giving the rate of change of θ with respect to the object's height z (in miles).

