1. Find the derivative: $y = \cos(\pi x) \ln |5x|$

2. Find the derivative: $y = \sin^{-1}(x^5 + 1)$

3. Find the derivative: $y = (1 + \tan^{-1}(x))^5$

4. A rocket, moving straight up after launch, has a height of $s(t) = t^2 - 8t + 91$ meters at time t (seconds). Find the rocket's velocity when it is 100 meters high. (Assume $t \ge 0$.)

1. Find the derivative: $y = e^{-x} \ln |3x|$

2. Find the derivative: $y = \sin^{-1} \left(\ln |x| \right)$

3. Find the derivative: $y = \ln \left| \sin^{-1}(x) \right|$

4. A rocket, moving straight up after launch, has a height of $s(t) = 5t^3 - 10t$ meters at time t (seconds). Find the rocket's velocity when its acceleration is 300 meters per second per second.

1. Find the derivative: $y = \sec^{-1}(3x)$

2. Find the derivative: $y = 3x \tan^{-1}(x)$

3. Find the derivative: $y = \ln |\sin^{-1}(x)|$

4. A rocket, moving straight up after launch, has a height of $s(t) = t^2 - 6t + 100$ meters at time t (seconds). Find the rocket's height when its velocity is 14 meters per second.

1. Find the derivative: $y = \sin^{-1}(7\ln(x))$

2. Find the derivative: $y = \ln \left(\tan^{-1}(x) \right)$

3. Find the derivative: $y = (x + \sin^{-1}(x))^8$

4. A rocket, moving straight up after launch, has a height of $s(t) = 5t^3 + 10t$ meters at time t (seconds). Find the rocket's height when its acceleration is 60 meters per second per second.