1. Find the derivative: $y=\cos (\pi x) \ln |5 x|$
2. Find the derivative: $y=\sin ^{-1}\left(x^{5}+1\right)$
3. Find the derivative: $y=\left(1+\tan ^{-1}(x)\right)^{5}$
4. A rocket, moving straight up after launch, has a height of $s(t)=t^{2}-8 t+91$ meters at time t (seconds). Find the rocket's velocity when it is 100 meters high. (Assume $t \geq 0$.)
5. Find the derivative: $y=e^{-x} \ln |3 x|$
6. Find the derivative: $y=\sin ^{-1}(\ln |x|)$
7. Find the derivative: $y=\ln \left|\sin ^{-1}(x)\right|$
8. A rocket, moving straight up after launch, has a height of $s(t)=5 t^{3}-10 t$ meters at time t (seconds). Find the rocket's velocity when its acceleration is 300 meters per second per second.
9. Find the derivative: $y=\sec ^{-1}(3 x)$
10. Find the derivative: $y=3 x \tan ^{-1}(x)$
11. Find the derivative: $y=\ln \left|\sin ^{-1}(x)\right|$
12. A rocket, moving straight up after launch, has a height of $s(t)=t^{2}-6 t+100$ meters at time t (seconds). Find the rocket's height when its velocity is 14 meters per second.
13. Find the derivative: $y=\sin ^{-1}(7 \ln (x))$
14. Find the derivative: $y=\ln \left(\tan ^{-1}(x)\right)$
15. Find the derivative: $y=\left(x+\sin ^{-1}(x)\right)^{8}$
16. A rocket, moving straight up after launch, has a height of $s(t)=5 t^{3}+10 t$ meters at time t (seconds). Find the rocket's height when its acceleration is 60 meters per second per second.
