I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)

I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)

1.
$$\sum_{k=2}^{3} 5 =$$

2.
$$\sum_{k=2}^{3} 5k =$$

3. Using the definition of the definite integral and the integral symbol, write out the integral that finds area under the curve $y = \ln(x^3)$ from x = 1 to x = e. Do not compute the integral.

Name: _____

MATH 200 – QUIZ 12 November 29, 2012

1. $\sum_{k=2}^{4} 2 =$

2.
$$\sum_{k=2}^{4} 2k =$$

3. Using the definition of the definite integral and the integral symbol, write out the integral that finds area under the curve $y = e^x$ from x = 0 to $x = \ln(4)$. Do not compute the integral.

I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)

MATH 200 – Quiz 12 🕽

November 30, 2012

1.
$$\sum_{k=2}^{5} 4 =$$

2.
$$\sum_{k=1}^{3} 4k =$$

3. Using the definition of the definite integral and the integral symbol, write out the integral that finds area under the curve $y = \sin(\pi x)$ from x = 0 to $x = \pi$. Do not compute the integral.

Name: _____

I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)

1.
$$\sum_{k=3}^{7} 3 =$$

2.
$$\sum_{k=1}^{4} 3k =$$

3. Using the definition of the definite integral and the integral symbol, write out the integral that finds area under the curve $y = e^{2x}$ from x = 0 to $x = \ln(2)$. Do not compute the integral.