1. $\sum_{k=2}^{3} 5=$
2. $\sum_{k=2}^{3} 5 k=$
3. Using the definition of the definite integral and the integral symbol, write out the integral that finds area under the curve $y=\ln \left(x^{3}\right)$ from $x=1$ to $x=e$. Do not compute the integral.

Name: \qquad
I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)

1. $\sum_{k=2}^{4} 2=$
2. $\sum_{k=2}^{4} 2 k=$
3. Using the definition of the definite integral and the integral symbol, write out the integral that finds area under the curve $y=e^{x}$ from $x=0$ to $x=\ln (4)$. Do not compute the integral.
4. $\sum_{k=2}^{5} 4=$
5. $\sum_{k=1}^{3} 4 k=$
6. Using the definition of the definite integral and the integral symbol, write out the integral that finds area under the curve $y=\sin (\pi x)$ from $x=0$ to $x=\pi$. Do not compute the integral.

Name: \qquad MATH 200 - Quiz 12 .
I'm in the Thurs11 Thurs12 Thurs1 or Fri10 recitation. (Circle one)
November 30, 2012

1. $\sum_{k=3}^{7} 3=$
2. $\sum_{k=1}^{4} 3 k=$
3. Using the definition of the definite integral and the integral symbol, write out the integral that finds area under the curve $y=e^{2 x}$ from $x=0$ to $x=\ln (2)$. Do not compute the integral.
