Probabilistic proofs of hook length formulas involving trees

by

Bruce E. Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027, USA
sagan@math.msu.edu

Let T be a rooted tree with n distinguishable vertices. We use T to stand for the vertex set of T. An increasing labeling of T is a bijection $\ell: T \rightarrow\{1,2, \ldots, n\}$ such that $\ell(v) \leq \ell(w)$ for all descendents w of v. Let f^{T} be the number of increasing labelings. The hooklength, h_{v}, of a vertex v is the number of descendents of v (including v itself). The hook length formula for trees states that

$$
f^{T}=\frac{n!}{\prod_{v \in T} h_{v}} .
$$

There is a similar formula for the number of standard Young tableaux of given shape where a hooklength is the cardinality of a set which resembles a physical hook. Greene, Nijenhuis, and Wilf gave a beautiful probabilistic proof of the tableau formula where the hooklenths enter in a very natural way.

Recently, Han discovered a formula which has the interesting property that hooklengths appear as exponents. Specifically, let $\mathcal{B}(n)$ be the set of all n-vertex binary trees (each vertex has no children, a left child, a right child, or both children). Han proved that

$$
\sum_{T \in \mathcal{B}(n)} \prod_{v \in T} \frac{1}{h_{v} 2^{h_{v}-1}}=\frac{1}{n!}
$$

using algebraic manipulations. We will show how to give a simple probabilistic proof of this equation as well as various generalizations. We will also pose some open questions raised by this work.

