
Solutions

Chapter 1 Exercises
Section 1.1
1. {5x−1 : x ∈Z}= {. . .−11,−6,−1,4,9,14,19,24,29, . . .}
3. {x ∈Z :−2≤ x < 7}= {−2,−1,0,1,2,3,4,5,6}
5.

{
x ∈R : x2 = 3

}= {−p3,
p

3
}

7.
{
x ∈R : x2 +5x =−6

}= {−2,−3}
9. {x ∈R : sinπx = 0}= {. . . ,−2,−1,0,1,2,3,4, . . .}=Z

11. {x ∈Z : |x| < 5}= {−4,−3,−2,−1,0,1,2,3,4}
13. {x ∈Z : |6x| < 5}= {0}
15. {5a+2b : a,b ∈Z}= {. . . ,−2,−1,0,1,2,3, . . .}=Z
17. {2,4,8,16,32,64 . . .}= {2x : x ∈N}
19. {. . . ,−6,−3,0,3,6,9,12,15, . . .}= {3x : x ∈Z}
21. {0,1,4,9,16,25,36, . . .}= {

x2 : x ∈Z}
23. {3,4,5,6,7,8}= {x ∈Z : 3≤ x ≤ 8}= {x ∈N : 3≤ x ≤ 8}
25.

{
. . . , 1

8 , 1
4 , 1

2 ,1,2,4,8, . . .
}= {2n : n ∈Z}

27.
{
. . . ,−π,−π

2 ,0, π2 ,π, 3π
2 ,2π, 5π

2 , . . .
}= {

kπ
2 : k ∈Z

}
29. |{{1} , {2, {3,4}} ,;}| = 3
31. |{{{1} , {2, {3,4}} ,;}}| = 1

33. |{x ∈Z : |x| < 10}| = 19
35. |{x ∈Z : x2 < 10

}| = 7
37. |{x ∈N : x2 < 0

}| = 0

39. {(x, y) : x ∈ [1,2], y ∈ [1,2]}

−3 −2 −1 1 2 3

−2

−1

1

2

41. {(x, y) : x ∈ [−1,1], y= 1}

−3 −2 −1 1 2 3

−2

−1

1

2

43. {(x, y) : |x| = 2, y ∈ [0,1]}

−3 −2 −1 1 2 3

−2

−1

1

2

45.
{
(x, y) : x, y ∈R, x2 + y2 = 1

}

−3 −2 −1 1 2 3

−2

−1

1

2
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47.
{
(x, y) : x, y ∈R, y≥ x2 −1

}

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

49. {(x, x+ y) : x ∈R, y ∈Z}

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

51. {(x, y) ∈R2 : (y− x)(y+ x)= 0}

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Section 1.2

1. Suppose A = {1,2,3,4} and B = {a, c}.
(a) A×B = {(1,a), (1, c), (2,a), (2, c), (3,a), (3, c), (4,a), (4, c)}

(b) B× A = {(a,1), (a,2), (a,3), (a,4), (c,1), (c,2), (c,3), (c,4)}

(c) A× A = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4),
(3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)}

(d) B×B = {(a,a), (a, c), (c,a), (c, c)}

(e) ;×B = {(a,b) : a ∈;,b ∈ B}=; (There are no ordered pairs (a,b) with a ∈;.)
(f) (A×B)×B =

{((1,a),a), ((1, c),a), ((2,a),a), ((2, c),a), ((3,a),a), ((3, c),a), ((4,a),a), ((4, c),a),
((1,a), c), ((1, c), c), ((2,a), c), ((2, c), c), ((3,a), c), ((3, c), c), ((4,a), c), ((4, c), c)}

(g) A× (B×B)={
(1, (a,a)), (1, (a, c)), (1, (c,a)), (1, (c, c)),
(2, (a,a)), (2, (a, c)), (2, (c,a)), (2, (c, c)),
(3, (a,a)), (3, (a, c)), (3, (c,a)), (3, (c, c)),
(4, (a,a)), (4, (a, c)), (4, (c,a)), (4, (c, c))

}
(h) B3 = {(a,a,a), (a,a, c), (a, c,a), (a, c, c), (c,a,a), (c,a, c), (c, c,a), (c, c, c)}

3.
{
x ∈R : x2 = 2

}× {a, c, e}= {
(−p2,a), (

p
2,a), (−p2, c), (

p
2, c), (−p2, e), (

p
2, e)

}
5.

{
x ∈R : x2 = 2

}× {x ∈R : |x| = 2}= {
(−p2,−2), (

p
2,2), (−p2,2), (

p
2,−2)

}
7. {;}× {0,;}× {0,1}= {(;,0,0), (;,0,1), (;,;,0), (;,;,1)}
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Sketch the following Cartesian products on the x-y plane.
9. {1,2,3}× {−1,0,1}

−3 −2 −1 1 2 3

−2

−1

1

2

11. [0,1]× [0,1]

−3 −2 −1 1 2 3

−2

−1

1

2

13. {1,1.5,2}× [1,2]

−3 −2 −1 1 2 3

−2

−1

1

2

15. {1}× [0,1]

−3 −2 −1 1 2 3

−2

−1

1

2

17. N×Z

−3 −2 −1 1 2 3

−2

−1

1

2

19. [0,1]× [0,1]× [0,1]

−3 −2 −1 1 2 3

−2

−1

1

2

Section 1.3
A. List all the subsets of the following sets.

1. The subsets of {1,2,3,4} are: {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4},
{3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}.

3. The subsets of {{R}} are: {} and {{R}}.
5. The subsets of {;} are {} and {;}.
7. The subsets of {R, {Q,N}} are {}, {R},{{Q,N}}, {R, {Q,N}}.

B. Write out the following sets by listing their elements between braces.
9.

{
X : X ⊆ {3,2,a} and |X | = 2

} = {{3,2} , {3,a} , {2,a}}

11.
{
X : X ⊆ {3,2,a} and |X | = 4

} = {}=;

C. Decide if the following statements are true or false.
13. R3 ⊆R3 is true because any set is a subset of itself.
15.

{
(x, y) : x−1= 0

}⊆ {
(x, y) : x2 − x = 0

}
. This is true. (The even-numbered ones

are both false. You have to explain why.)
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Section 1.4
A. Find the indicated sets.

1. P({{a,b} , {c}})= {;, {{a,b}} , {{c}} , {{a,b} , {c}}}

3. P({{;} ,5})= {;, {{;}} , {5} , {{;} ,5}}

5. P(P({2}))= {;, {;} , {{2}} , {;, {2}}}

7. P({a,b})×P({0,1})={
(;,;), (;, {0}), (;, {1}), (;, {0,1}),

({a} ,;), ({a} , {0}), ({a} , {1}), ({a} , {0,1}),
({b} ,;), ({b} , {0}), ({b} , {1}), ({b} , {0,1}),

({a,b} ,;), ({a,b} , {0}), ({a,b} , {1}), ({a,b} , {0,1})
}

9. P({a,b}× {0})= {;, {(a,0)} , {(b,0)} , {(a,0), (b,0)}}

11. {X ⊆P({1,2,3}) : |X | ≤ 1}=
{;, {;} , {{1}} , {{2}} , {{3}} , {{1,2}} , {{1,3}} , {{2,3}} , {{1,2,3}}}

B. Suppose that |A| = m and |B| = n. Find the following cardinalities.

13. |P(P(P(A)))| = 2
(
2(2m )

)
15. |P(A×B)| = 2mn

17. |{X ∈P(A) : |X | ≤ 1}| = m+1

19. |P(P(P(A×;)))| = |P(P(P(;)))| = 4

Section 1.5

1. Suppose A = {4,3,6,7,1,9}, B = {5,6,8,4} and C = {5,8,4} . Find:
(a) A∪B = {1,3,4,5,6,7,8,9}
(b) A∩B = {4,6}
(c) A−B = {3,7,1,9}
(d) A−C = {3,6,7,1,9}
(e) B− A = {5,8}

(f) A∩C = {4}

(g) B∩C = {5,8,4}

(h) B∪C = {5,6,8,4}

(i) C−B = ;

3. Suppose A = {0,1} and B = {1,2}. Find:
(a) (A×B)∩ (B×B)= {(1,1), (1,2)}

(b) (A×B)∪ (B×B)= {(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)}

(c) (A×B)− (B×B)= {(0,1), (0,2)}

(d) (A∩B)× A = {(1,0), (1,1)}

(e) (A×B)∩B = ;

(f) P(A)∩P(B)= {;, {1}}

(g) P(A)−P(B)= {{0} , {0,1}}

(h) P(A∩B)= {{} , {1}}

(i)
{;, {(0,1)}, {(0,2)}, {(1,1)}, {(1,2)}, {(0,1), (0,2)}, {(0,1), (1,1)}, {(0,1), (1,2)}, {(0,2), (1,1)},

{(0,2), (1,2)}, {(1,1), (1,2)}, {(0,2), (1,1), (1,2)}, {(0,1), (1,1), (1,2)}, {(0,1), (0,2), (1,2)},
{(0,1), (0,2), (1,1)}, {(0,1), (0,2), (1,1), (1,2)}

}
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5. Sketch the sets X = [1,3]×[1,3] and Y = [2,4]×[2,4] on the plane R2. On separate
drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X . (Hint: X and Y are
Cartesian products of intervals. You may wish to review how you drew sets
like [1,3]× [1,3] in the Section 1.2.)

Y

X

X ∪Y

X ∩Y X −Y

Y − X

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

7. Sketch the sets X = {
(x, y) ∈R2 : x2 + y2 ≤ 1

}
and Y = {

(x, y) ∈R2 : x ≥ 0
}
on R2. On

separate drawings, shade in the sets X ∪Y , X ∩Y , X −Y and Y − X .

X
Y X ∪Y X ∩Y X −Y Y − X

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

−2 −1 1 2

−2

−1

1

2

9. The first statement is true. (A picture should convince you; draw one if
necessary.) The second statement is false: Notice for instance that (0.5,0.5) is
in the right-hand set, but not the left-hand set.

Section 1.6

1. Suppose A = {4,3,6,7,1,9} and B = {5,6,8,4} have universal set U = {n ∈Z : 0≤ n ≤ 10}.
(a) A = {0,2,5,8,10}
(b) B = {0,1,2,3,7,9,10}
(c) A∩ A = ;
(d) A∪ A = {0,1,2,3,4,5,6,7,8,9,10}=U
(e) A− A = A

(f) A−B = {4,6}

(g) A−B = {5,8}

(h) A∩B = {5,8}

(i) A∩B = {0,1,2,3,4,6,7,9,10}

3. Sketch the set X = [1,3]× [1,2] on the plane R2. On separate drawings, shade in
the sets X , and X ∩ ([0,2]× [0,3]).

X

X

X ∩ ([0,2]× [0,3])
−1 1 2 3
−1

1

2

3

−1 1 2 3
−1

1

2

3

−1 1 2 3
−1

1

2

3

5. Sketch the set X = {
(x, y) ∈R2 : 1≤ x2 + y2 ≤ 4

}
on the plane R2. On a separate

drawing, shade in the set X .
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X
X

1 2 3

1
2
3

1 2 3

1
2
3

Solution of 1.6, #5.

A

A (shaded)
U

Solution of 1.7, #1.

Section 1.7
1. Draw a Venn diagram for A. (Solution above right)
3. Draw a Venn diagram for (A−B)∩C.

Scratch work is shown on the right. The
set A−B is indicated with vertical shading.
The set C is indicated with horizontal shad-
ing. The intersection of A−B and C is thus
the overlapping region that is shaded with
both vertical and horizontal lines. The final
answer is drawn on the far right, where the
set (A−B)∩C is shaded in gray.

A AB B

C C

5. Draw Venn diagrams for A∪(B∩C) and (A∪B)∩(A∪C). Based on your drawings,
do you think A∪ (B∩C) = (A∪B)∩ (A∪C)?
If you do the drawings carefully, you will find
that your Venn diagrams are the same for both
A∪ (B∩C) and (A∪B)∩ (A∪C). Each looks as
illustrated on the right. Based on this, we are
inclined to say that the equation A∪ (B∩C) =
(A∪B)∩ (A∪C) holds for all sets A, B and C. A B

C

7. Suppose sets A and B are in a universal set U. Draw Venn diagrams for A∩B
and A∪B. Based on your drawings, do you think it’s true that A∩B = A∪B?
The diagrams for A∩B and A∪B look exactly
alike. In either case the diagram is the shaded
region illustrated on the right. Thus we would
expect that the equation A∩B = A∪B is true
for any sets A and B.

A B

U

9. Draw a Venn diagram for (A∩B)−C.

A B

C

11. The simplest answer is (B∩C)− A.
13. One answer is (A∪B∪C)− (A∩B∩C).
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Section 1.8

1. Suppose A1 = {a,b,d, e, g, f }, A2 = {a,b, c,d}, A3 = {b,d,a} and A4 = {a,b,h}.

(a)
4⋃

i=1
A i = {a,b, c,d, e, f , g,h} (b)

4⋂
i=1

A i = {a,b}

3. For each n ∈N, let An = {0,1,2,3, . . . ,n}.
(a)

⋃
i∈N

A i = {0}∪N (b)
⋂
i∈N

A i = {0,1}

5. (a)
⋃
i∈N

[i, i+1]=[1,∞) (b)
⋂
i∈N

[i, i+1]=;

7. (a)
⋃
i∈N

R× [i, i+1]= {(x, y) : x, y ∈R, y≥ 1} (b)
⋂
i∈N

R× [i, i+1]= ;

9. (a)
⋃

X∈P(N)
X = N (b)

⋂
X∈P(N)

X = ;

11. Yes, this is always true.
13. The first is true, the second is false.

Chapter 2 Exercises
Section 2.1

Decide whether or not the following are statements. In the case of a statement,
say if it is true or false.

1. Every real number is an even integer. (Statement, False)

3. If x and y are real numbers and 5x = 5y, then x = y. (Statement, True)

5. Sets Z and N are infinite. (Statement, True)

7. The derivative of any polynomial of degree 5 is a polynomial of degree 6.
(Statement, False)

9. cos(x)=−1
This is not a statement. It is an open sentence because whether it’s true or
false depends on the value of x.

11. The integer x is a multiple of 7.
This is an open sentence, and not a statement.

13. Either x is a multiple of 7, or it is not.
This is a statement, for the sentence is true no matter what x is.

15. In the beginning God created the heaven and the earth.
This is a statement, for it is either definitely true or definitely false. There is
some controversy over whether it’s true or false, but no one claims that it is
neither true nor false.
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Section 2.2
Express each statement as one of the forms P ∧Q, P ∨Q, or ∼ P. Be sure to also
state exactly what statements P and Q stand for.
1. The number 8 is both even and a power of 2.

P ∧Q
P: 8 is even
Q: 8 is a power of 2
Note: Do not say “Q: a power of 2,” because that is not a statement.

3. x 6= y ∼ (x = y) (Also ∼ P where P : x = y.)
5. y≥ x ∼ (y< x) (Also ∼ P where P : y< x.)
7. The number x equals zero, but the number y does not.

P∧∼Q
P : x = 0
Q : y= 0

9. x ∈ A−B
(x ∈ A)∧∼ (x ∈ B)

11. A ∈ {
X ∈P(N) : |X | <∞}

(A ⊆N)∧ (|A| <∞).
13. Human beings want to be good, but not too good, and not all the time.

P∧∼Q∧∼ R
P : Human beings want to be good.
Q : Human beings want to be too good.
R : Human beings want to be good all the time.

Section 2.3
Without changing their meanings, convert each of the following sentences into a
sentence having the form “If P, then Q.”
1. A matrix is invertible provided that its determinant is not zero.

Answer: If a matrix has a determinant not equal to zero, then it is invertible.
3. For a function to be integrable, it is necessary that it is continuous.

Answer: If function is integrable, then it is continuous.
5. An integer is divisible by 8 only if it is divisible by 4.

Answer: If an integer is divisible by 8, then it is divisible by 4.

7. A series converges whenever it converges absolutely.
Answer: If a series converges absolutely, then it converges.

9. A function is integrable provided the function is continuous.
Answer: If a function is continuous, then that function is integrable.

11. You fail only if you stop writing.
Answer: If you fail, then you have stopped writing.

13. Whenever people agree with me I feel I must be wrong.
Answer: If people agree with me, then I feel I must be wrong.
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Section 2.4

Without changing their meanings, convert each of the following sentences into a
sentence having the form “P if and only if Q.”
1. For a matrix to be invertible, it is necessary and sufficient that its determinant

is not zero.
Answer: A matrix is invertible if and only if its determinant is not zero.

3. If xy= 0 then x = 0 or y= 0, and conversely.
Answer: xy= 0 if and only if x = 0 or y= 0

5. For an occurrence to become an adventure, it is necessary and sufficient for
one to recount it.
Answer: An occurrence becomes an adventure if and only if one recounts it.

Section 2.5
1. Write a truth table for P ∨ (Q ⇒ R)

P Q R Q ⇒ R P ∨ (Q ⇒ R)

T T T T T
T T F F T
T F T T T
T F F T T
F T T T T
F T F F F
F F T T T
F F F T T

3. Write a truth table for ∼ (P ⇒Q)

P Q P ⇒Q ∼ (P ⇒Q)

T T T F
T F F T
F T T F
F F T F

5. Write a truth table for (P∧∼ P)∨Q

P Q (P∧∼ P) (P∧∼ P)∨Q

T T F T
T F F F
F T F T
F F F F

7. Write a truth table for (P∧∼ P)⇒Q

P Q (P∧∼ P) (P∧∼ P)⇒Q

T T F T
T F F T
F T F T
F F F T

9. Write a truth table for ∼ (∼ P∨∼Q).

P Q ∼ P ∼Q ∼ P∨∼Q ∼ (∼ P∨∼Q)

T T F F F T
T F F T T F
F T T F T F
F F T T T F
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11. Suppose P is false and that the statement (R ⇒ S)⇔ (P ∧Q) is true. Find the
truth values of R and S. (This can be done without a truth table.)
Answer: Since P is false, it follows that (P∧Q) is false also. But then in order
for (R ⇒ S)⇔ (P ∧Q) to be true, it must be that (R ⇒ S) is false. The only way
for (R ⇒ S) to be false is if R is true and S is false.

Section 2.6
A. Use truth tables to show that the following statements are logically equivalent.

1. P ∧ (Q∨R)= (P ∧Q)∨ (P ∧R)

P Q R Q∨R P ∧Q P ∧R P ∧ (Q∨R) (P ∧Q)∨ (P ∧R)

T T T T T T T T
T T F T T F T T
T F T T F T T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

Thus since their columns agree, the two statements are logically equivalent.
3. P ⇒Q = (∼ P)∨Q

P Q ∼ P (∼ P)∨Q P ⇒Q

T T F T T
T F F F F
F T T T T
F F T T T

Thus since their columns agree, the two statements are logically equivalent.
5. ∼ (P ∨Q∨R) = (∼ P)∧ (∼Q)∧ (∼ R)

P Q R P ∨Q∨R ∼ P ∼Q ∼ R ∼ (P ∨Q∨R) (∼ P)∧ (∼Q)∧ (∼ R)

T T T T F F F F F
T T F T F F T F F
T F T T F T F F F
T F F T F T T F F
F T T T T F F F F
F T F T T F T F F
F F T T T T F F F
F F F F T T T T T

Thus since their columns agree, the two statements are logically equivalent.
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7. P ⇒Q = (P∧∼Q)⇒ (Q∧∼Q)

P Q ∼Q P∧∼Q Q∧∼Q (P∧∼Q)⇒ (Q∧∼Q) P ⇒Q

T T F F F T T
T F T T F F F
F T F F F T T
F F T F F T T

Thus since their columns agree, the two statements are logically equivalent.

B. Decide whether or not the following pairs of statements are logically equivalent.
9. By DeMorgan’s law, we have ∼ (∼ P∨ ∼ Q) =∼∼ P∧ ∼∼ Q = P ∧Q. Thus the

two statements are logically equivalent.
11. (∼ P)∧ (P ⇒Q) and ∼ (Q ⇒ P)

P Q ∼ P P ⇒Q Q ⇒ P (∼ P)∧ (P ⇒Q) ∼ (Q ⇒ P)

T T F T T F F
T F F F T F F
F T T T F T T
F F T T T T F

The columns for the two statements do not quite agree, thus the two state-
ments are not logically equivalent.

Section 2.7

Write the following as English sentences. Say whether the statements are true
or false.
1. ∀x ∈R, x2 > 0

Answer: For every real number x, x2 > 0.
Also: For every real number x, it follows that x2 > 0.
Also: The square of any real number is positive. (etc.)
This statement is FALSE. Reason: 0 is a real number, but it’s not true that
02 > 0.

3. ∃a ∈R,∀x ∈R,ax = x.
Answer: There exists a real number a for which ax = x for every real number x.
This statement is TRUE. Reason: Consider a = 1.

5. ∀n ∈N,∃X ∈P(N), |X | < n
Answer: For every natural number n, there is a subset X of N with |X | < n.
This statement is TRUE. Reason: Suppose n ∈N. Let X =;. Then |X | = 0< n.
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7. ∀X ⊆N,∃n ∈Z, |X | = n
Answer: For any subset X of N, there exists an integer n for which |X | = n.
This statement is FALSE. For example, the set X = {2,4,6,8, . . .} of all even
natural numbers is infinite, so there does not exist any integer n for which
|X | = n.

9. ∀n ∈Z,∃m ∈Z,m = n+5
Answer: For every integer n there is another integer m such that m = n+5.
This statement is TRUE.

Section 2.9

Translate each of the following sentences into symbolic logic.
1. If f is a polynomial and its degree is greater than 2, then f ′ is not constant.

Translation: (P ∧Q)⇒ R, where
P : f is a polynomial,
Q : f has degree greater than 2,
R : f ′ is not constant.

3. If x is prime then p
x is not a rational number.

Translation: P ⇒∼Q, where
P : x is prime,
Q :

p
x is a rational number.

5. For every positive number ε, there is a positive number δ for which |x−a| < δ
implies | f (x)− f (a)| < ε.
Translation: ∀ ε ∈R,ε> 0,∃ δ ∈R,δ> 0, (|x−a| < δ)⇒ (| f (x)− f (a)| < ε)

7. There exists a real number a for which a+ x = x for every real number x.
Translation: ∃a ∈R,∀x ∈R,a+ x = x

9. If x is a rational number and x 6= 0, then tan(x) is not a rational number.
Translation: ((x ∈Q)∧ (x 6= 0))⇒ (tan(x) ∉Q)

11. There is a Providence that protects idiots, drunkards, children and the United
States of America.
One translation is as follows. Let R be union of the set of idiots, the set of
drunkards, the set of children, and the set consisting of the USA. Let P be the
open sentence P(x): x is a Providence. Let S be the open sentence S(x, y): x
protects y. Then the translation is ∃x,∀ y ∈ R,P(x)∧S(x, y).
(Notice that, although this is mathematically correct, some humor has been
lost in the translation.)

13. Everything is funny as long as it is happening to somebody else.
Translation: ∀x, (∼ M(x)∧S(x))⇒ F(x),
where M(x): x is happening to me, S(x): x is happening to someone, and F(x) : x
is funny.
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Section 2.10

Negate the following sentences.

1. The number x is positive, but the number y is not positive.
The “but” can be interpreted as “and.” Using DeMorgan’s law, the negation is:
The number x is not positive or the number y is positive.

3. For every prime number p there, is another prime number q with q > p.
Negation: There is a prime number p such that for every prime number q,
q ≤ p.
Also: There exists a prime number p for which q ≤ p for every prime number q.
(etc.)

5. For every positive number ε there is a positive number M for which | f (x)−b| < ε
whenever x > M.
To negate this, it may be helpful to first write it in symbolic form. The statement
is ∀ε ∈ (0,∞),∃M ∈ (0,∞), (x > M)⇒ (| f (x)−b| < ε).
Working out the negation, we have

∼ (∀ε ∈ (0,∞),∃M ∈ (0,∞), (x > M)⇒ (| f (x)−b| < ε)) =
∃ε ∈ (0,∞),∼ (∃M ∈ (0,∞), (x > M)⇒ (| f (x)−b| < ε)) =
∃ε ∈ (0,∞),∀M ∈ (0,∞),∼ (

(x > M)⇒ (| f (x)−b| < ε)).
Finally, using the idea from Example 2.14, we can negate the conditional
statement that appears here to get

∃ε ∈ (0,∞),∀M ∈ (0,∞),∃x, (x > M)∧∼ (| f (x)−b| < ε)).
Negation: There exists a positive number ε with the property that for every
positive number M, there is a number x for which x > M and | f (x)−b| ≥ ε.

7. I don’t eat anything that has a face.
Negation: I will eat some things that have a face.
(Note. If your answer was “I will eat anything that has a face.” then that is
wrong, both morally and mathematically.)

9. If sin(x)< 0, then it is not the case that 0≤ x ≤π.
Negation: There exists a number x for which sin(x)< 0 and 0≤ x ≤π.

11. You can fool all of the people all of the time.

There are several ways to negate this, including:
There is a person that you can’t fool all the time. or
There is a person x and a time y for which x is not fooled at time y.
(But Abraham Lincoln said it better.)
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Chapter 3 Exercises
Section 3.1

1. Consider lists made from the letters T, H, E, O, R, Y, with repetition allowed.
(a) How many length-4 lists are there? Answer: 6 ·6 ·6 ·6= 1296.
(b) How many length-4 lists are there that begin with T?

Answer: 1 ·6 ·6 ·6= 216.
(c) How many length-4 lists are there that do not begin with T?

Answer: 5 ·6 ·6 ·6= 1080.

3. How many ways can you make a list of length 3 from symbols a,b,c,d,e,f if...
(a) ... repetition is allowed. Answer: 6 ·6 ·6= 216.
(b) ... repetition is not allowed. Answer: 6 ·5 ·4= 120.
(c) ... repetition is not allowed and the list must contain the letter a.

Answer: 5 ·4+5 ·4+5 ·4= 60.

(d) ... repetition is allowed and the list must contain the letter a.
Answer: 6 ·6 ·6−5 ·5 ·5= 91.

(Note: See Example 3.2 if a more detailed explanation is required.)

5. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which all five cards are of the same color? (i.e.,
all black or all red.)
There are 26·25·24·23·22= 7,893,600 possible black-card line-ups and 26·25·24·23·
22= 7,893,600 possible red-card line-ups, so the answer is 7,893,600+7,893,600=
15,787,200.

7. This problems involves 8-digit binary strings such as 10011011 or 00001010.
(i.e., 8-digit numbers composed of 0’s and 1’s.)
(a) How many such strings are there? Answer: 2 ·2 ·2 ·2 ·2 ·2 ·2 ·2= 256.
(b) How many such strings end in 0? Answer: 2 ·2 ·2 ·2 ·2 ·2 ·2 ·1= 128.

(c) How many such strings have the property that their second and fourth
digits are 1’s? Answer: 2 ·1 ·2 ·1 ·2 ·2 ·2 ·2= 64.

(d) How many such strings are such that their second or fourth digits are 1’s?
Answer: These strings can be divided into three types. Type 1 consists of
those strings of form ∗1∗0∗∗∗∗, Type 2 consist of strings of form ∗0∗1∗∗∗∗,
and Type 3 consists of those of form ∗1∗1∗∗∗∗. By the multiplication
principle there are 26 = 64 strings of each type, so there are 3 ·64= 192
8-digit binary strings whose second or fourth digits are 1’s.

9. This problem concerns 4-letter codes that can be made from the letters of the
English Alphabet.
(a) How many such codes can be made? Answer: 26 ·26 ·26 ·26= 456976
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(b) How many such codes have no two consecutive letters the same?
We use the multiplication principle. There are 26 choices for the first letter.
The second letter can’t be the same as the first letter, so there are only 25
choices for it. The third letter can’t be the same as the second letter, so there
are only 25 choices for it. The fourth letter can’t be the same as the third letter,
so there are only 25 choices for it. Thus there are 26 ·25 ·25 ·25= 406,250
codes with no two consecutive letters the same.

11. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,G,H.
How many such lists are possible if repetition is not allowed and the list
contains two consecutive vowels?
Answer: There are just two vowels A and E to choose from. The lists we want
to make can be divided into five types. They have one of the forms VV∗∗∗∗,
or ∗VV∗∗∗, or ∗∗VV∗∗, or ∗∗∗VV∗, or ∗∗∗∗VV , where V indicates a
vowel and ∗ indicates a consonant. By the multiplication principle, there are
2 ·1 ·6 ·5 ·4 ·3= 720 lists of form VV ∗∗∗∗. In fact, that for the same reason there
are 720 lists of each form. Thus the answer to the question is 5 ·720= 3600

Section 3.2
1. Answer n = 14.

3. Answer: 5!= 120.

5. 120!
118! = 120·119·118!

118! = 120 ·119= 14,280.

7. Answer: 5!4!= 2880.
9. The case x = 1 is straightforward. For x = 2,3 and 4, use integration by parts.

For x =π, you are on your own.
Section 3.3
1. Suppose a set A has 37 elements. How many subsets of A have 10 elements?

How many subsets have 30 elements? How many have 0 elements?
Answers:

(37
10

)= 348,330,136;
(37
30

)= 10,295,472;
(37

0
)= 1.

3. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?
The answer will be n, where

(n
3
) = 56. After some trial and error, you will

discover
(8
3
)= 56, so |X | = 8.

5. How many 16-digit binary strings contain exactly seven 1’s?
Answer: Make such a string as follows. Start with a list of 16 blank spots.
Choose 7 of the blank spots for the 1’s and put 0’s in the other spots. There
are

(16
7

)= 114,40 ways to do this.
7. |{X ∈P({0,1,2,3,4,5,6,7,8,9}) : |X | < 4}| = (10

0
)+ (10

1
)+ (10

2
)+ (10

3
)= 1+10+45+120=

176.
9. This problem concerns lists of length six made from the letters A,B,C,D,E,F,

without repetition. How many such lists have the property that the D occurs
before the A?
Answer: Make such a list as follows. Begin with six blank spaces and select
two of these spaces. Put the D in the first selected space and the A in the
second. There are

(6
2
) = 15 ways of doing this. For each of these 15 choices

there are 4!= 24 ways of filling in the remaining spaces. Thus the answer to
the question is 15×24= 360 such lists.
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11. How many 10-digit integers contain no 0’s and exactly three 6’s?
Answer: Make such a number as follows: Start with 10 blank spaces and choose
three of these spaces for the 6’s. There are

(10
3

)= 120 ways of doing this. For
each of these 120 choices we can fill in the remaining seven blanks with choices
from the digits 1,2,3,4,5,7,8,9, and there are 87 to do this. Thus the answer to
the question is

(10
3

) ·87 = 251,658,240.

13. Assume n,k ∈Z with 0≤ k ≤ n. Then
(n

k
)= n!

(n−k)!k! = n!
k!(n−k)! = n!

(n−(n−k))!(n−k)! =
( n
n−k

)
.

Section 3.4

1. Write out Row 11 of Pascal’s triangle.
Answer: 1 11 55 165 330 462 462 330 165 55 11 1

3. Use the binomial theorem to find the coefficient of x8 in (x+2)13.
Answer: According to the binomial theorem, the coefficient of x8 y5 in (x+ y)13

is
(13

8
)
x8 y5 = 1287x8 y5. Now plug in y= 2 to get the final answer of 41184x8.

5. Use the binomial theorem to show ∑n
k=0

(n
k
)= 2n. Hint: Observe that 2n = (1+1)n.

Now use the binomial theorem to work out (x+ y)n and plug in x = 1 and y= 1.
7. Use the binomial theorem to show ∑n

k=0 3k (n
k
)= 4n.

Hint: Observe that 4n = (1+3)n. Now look at the hint for the previous problem.
9. Use the binomial theorem to show

(n
0
)− (n

1
)+ (n

2
)− (n

3
)+ (n

4
)− (n

5
)+ . . .± (n

n
) = 0.

Hint: Observe that 0= 0n = (1+ (−1))n. Now use the binomial theorem.
11. Use the binomial theorem to show 9n =∑n

k=0(−1)k (n
k
)
10n−k.

Hint: Observe that 9n = (10+ (−1))n. Now use the binomial theorem.
13. Assume n ≥ 3. Then

(n
3
)= (n−1

3
)+(n−1

2
)= (n−2

3
)+(n−2

2
)+(n−1

2
)= ·· · = (2

2
)+(3

2
)+·· ·+(n−1

2
)
.

Section 3.5

1. At a certain university 523 of the seniors are history majors or math majors
(or both). There are 100 senior math majors, and 33 seniors are majoring in
both history and math. How many seniors are majoring in history?
Answer: Let A be the set of senior math majors and B be the set of senior
history majors. From |A ∪B| = |A| + |B| − |A ∩B| we get 523 = 100+ |B| −33, so
|B| = 523+33−100= 456. There are 456 history majors.

3. How many 4-digit positive integers are there that are even or contain no 0’s?
Answer: Let A be the set of 4-digit even positive integers, and let B be the
set of 4-digit positive integers that contain no 0’s. We seek |A ∪B|. By the
multiplication principle |A| = 9 ·10 ·10 ·5= 4500. (Note the first digit cannot be 0
and the last digit must be even.) Also |B| = 9·9·9·9= 6561. Further, A∩B consists
of all even 4-digit integers that have no 0’s. It follows that |A∩B| = 9·9·9·4= 2916.
Then the answer to our question is |A∪B| = |A|+|B|−|A∩B| = 4500+6561−2916=
8145.
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5. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?
Answer: Let A be the set of such strings that begin in 1. Let B be the set of such
strings that end in 1. Let C be the set of such strings that have exactly four 1’s.
Then the answer to our question is |A∪B∪C|. Using Equation (3.4) to compute
this number, we have |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C| =
26 +26 + (7

4
)−25 − (6

3
)− (6

3
)+ (5

2
)= 64+64+35−32−20−20+10= 101.

7. This problem concerns 4-card hands dealt off of a standard 52-card deck. How
many 4-card hands are there for which all four cards are of the same suit or
all four cards are red?
Answer: Let A be the set of 4-card hands for which all four cards are of the
same suit. Let B be the set of 4-card hands for which all four cards are red.
Then A∩B is the set of 4-card hands for which the four cards are either all
hearts or all diamonds. The answer to our question is |A∪B| = |A|+|B|−|A∩B| =
4

(13
4

)+ (26
4

)−2
(13

4
)= 2

(13
4

)+ (26
4

)= 1430+14950= 16380.

9. A 4-letter list is made from the letters L,I,S,T,E,D according to the following
rule: Repetition is allowed, and the first two letters on the list are vowels or
the list ends in D.
Answer: Let A be the set of such lists for which the first two letters are
vowels, so |A| = 2 ·2 ·6 ·6= 144. Let B be the set of such lists that end in D, so
|B| = 6 ·6 ·6 ·1 = 216. Then A∩B is the set of such lists for which the first two
entries are vowels and the list ends in D. Thus |A∩B| = 2 ·2 ·6 ·1 = 24. The
answer to our question is |A∪B| = |A|+ |B|− |A∩B| = 144+216−24= 336.

Chapter 4 Exercises
1. If x is an even integer, then x2 is even.

Proof. Suppose x is even. Thus x = 2a for some a ∈Z.
Consequently x2 = (2a)2 = 4a2 = 2(2a2).
Therefore x2 = 2b, where b is the integer 2a2.
Thus x2 is even by definition of an even number. ■

3. If a is an odd integer, then a2 +3a+5 is odd.

Proof. Suppose a is odd.
Thus a = 2c+1 for some integer c, by definition of an odd number.
Then a2 +3a+5= (2c+1)2 +3(2c+1)+5= 4c2 +4c+1+6c+3+5= 4c2 +10c+9
= 4c2 +10c+8+1= 2(2c2 +5c+4)+1.
This shows a2 +3a+5= 2b+1, where b = 2c2 +5c+4 ∈Z.
Therefore a2 +3a+5 is odd. ■

5. Suppose x, y ∈Z. If x is even, then xy is even.

Proof. Suppose x, y ∈Z and x is even.
Then x = 2a for some integer a, by definition of an even number.
Thus xy= (2a)(y)= 2(ay).
Therefore xy= 2b where b is the integer ay, so xy is even. ■
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7. Suppose a,b ∈Z. If a | b, then a2 | b2.

Proof. Suppose a | b.
By definition of divisibility, this means b = ac for some integer c.
Squaring both sides of this equation produces b2 = a2c2.
Then b2 = a2d, where d = c2 ∈Z.
By definition of divisibility, this means a2 | b2. ■

9. Suppose a is an integer. If 7 | 4a, then 7 | a.

Proof. Suppose 7 | 4a.
By definition of divisibility, this means 4a = 7c for some integer c.
Since 4a = 2(2a) it follows that 4a is even, and since 4a = 7c, we know 7c is even.
But then c can’t be odd, because that would make 7c odd, not even.
Thus c is even, so c = 2d for some integer d.
Now go back to the equation 4a = 7c and plug in c = 2d. We get 4a = 14d.
Dividing both sides by 2 gives 2a = 7d.
Now, since 2a = 7d, it follows that 7d is even, and thus d cannot be odd.
Then d is even, so d = 2e for some integer e.
Plugging d = 2e back into 2a = 7d gives 2a = 14e.
Dividing both sides of 2a = 14e by 2 produces a = 7e.
Finally, the equation a = 7e means that 7 | a, by definition of divisibility. ■

11. Suppose a,b, c,d ∈Z. If a | b and c | d, then ac | bd.

Proof. Suppose a | b and c | d.
As a | b, the definition of divisibility means there is an integer x for which
b = ax.
As c | d, the definition of divisibility means there is an integer y for which
d = cy.
Since b = ax, we can multiply one side of d = cy by b and the other by ax.
This gives bd = axcy, or bd = (ac)(xy).
Since xy ∈Z, the definition of divisibility applied to bd = (ac)(xy) gives ac | bd. ■

13. Suppose x, y ∈R. If x2 +5y= y2 +5x, then x = y or x+ y= 5.

Proof. Suppose x2 +5y= y2 +5x.
Then x2 − y2 = 5x−5y, and factoring gives (x− y)(x+ y)= 5(x− y).
Now consider two cases.
Case 1. If x− y 6= 0 we can divide both sides of (x− y)(x+ y) = 5(x− y) by the
non-zero quantity x− y to get x+ y= 5.
Case 2. If x− y= 0, then x = y. (By adding y to both sides.)
Thus x = y or x+ y= 5. ■
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15. If n ∈Z, then n2 +3n+4 is even.

Proof. Suppose n ∈Z. We consider two cases.
Case 1. Suppose n is even. Then n = 2a for some a ∈Z.
Therefore n2 +3n+4= (2a)2 +3(2a)+4= 4a2 +6a+4= 2(2a2 +3a+2).
So n2 +3n+4= 2b where b = 2a2 +3a+2 ∈Z, so n2 +3n+4 is even.
Case 2. Suppose n is odd. Then n = 2a+1 for some a ∈Z.
Therefore n2+3n+4= (2a+1)2+3(2a+1)+4= 4a2+4a+1+6a+3+4= 4a2+10a+8
= 2(2a2+5a+4). So n2+3n+4= 2b where b = 2a2+5a+4 ∈Z, so n2+3n+4 is even.
In either case n2 +3n+4 is even. ■

17. If two integers have opposite parity, then their product is even.

Proof. Suppose a and b are two integers with opposite parity. Thus one is even
and the other is odd. Without loss of generality, suppose a is even and b is
odd. Therefore there are integers c and d for which a = 2c and b = 2d+1. Then
the product of a and b is ab = 2c(2d+1) = 2(2cd+ c). Therefore ab = 2k where
k = 2cd+ c ∈Z. Therefore the product ab is even. ■

19. Suppose a,b, c ∈Z. If a2 | b and b3 | c then a6 | c.

Proof. Since a2 | b we have b = ka2 for some k ∈Z. Since b3 | c we have c = hb3

for some h ∈Z. Thus c = h(ka2)3 = hk3a6. Hence a6 | c. ■

21. If p is prime and 0< k < p then p | (p
k
)
.

Proof. From the formula
(p

k
)= p!

(p−k)!k! , we get p! = (p
k
)
(p− k)!k!. Now, since the

prime number p is a factor of p! on the left, it must also be a factor of
(p

k
)
(p−k)!k!

on the right. Thus the prime number p appears in the prime factorization of(p
k
)
(p−k)!k!.

Now, k! is a product of numbers smaller than p, so its prime factorization
contains no p’s. Similarly the prime factorization of (p− k)! contains no p’s.
But we noted that the prime factorization of

(p
k
)
(p−k)!k! must contain a p, so it

follows that the prime factorization of
(p

k
)
contains a p. Thus

(p
k
)
is a multiple

of p, so p divides
(p

k
)
. ■

23. If n ∈N then
(2n

n
)
is even.

Proof. By definition,
(2n

n
)
is the number of n-element subsets of a set A with 2n

elements. For each subset X ⊆ A with |X | = n, the complement X is a different
set, but it also has 2n−n = n elements. Imagine listing out all the n-elements
subset of a set A. It could be done in such a way that the list has form

X1, X1, X2, X2, X3, X3, X4, X4, X5, X5 . . .

This list has an even number of items, for they are grouped in pairs. Thus
(2n

n
)

is even. ■
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25. If a,b, c ∈N and c ≤ b ≤ a then
(a
b
)(b

c
)= ( a

b−c
)(a−b+c

c
)
.

Proof. Assume a,b, c ∈ N with c ≤ b ≤ a. Then we have
(a
b
)(b

c
) = a!

(a−b)!b!
b!

(b−c)!c! =
a!

(a−b+c)!(a−b)!
(a−b+c)!
(b−c)!c! = a!

(b−c)!(a−b+c)!
(a−b+c)!
(a−b)!c! = ( a

b−c
)(a−b+c

c
)
. ■

27. Suppose a,b ∈N. If gcd(a,b)> 1, then b | a or b is not prime.

Proof. Suppose gcd(a,b) > 1. Let c = gcd(a,b) > 1. Then since c is a divisor of
both a and b, we have a = cx and b = cy for integers x and y. We divide into
two cases according to whether or not b is prime.
Case I. Suppose b is prime. Then the above equation b = cy with c > 1 forces
c = b and y = 1. Then a = cx becomes a = bx, which means b | a. We conclude
that the statement “b | a or b is not prime,” is true.
Case II. Suppose b is not prime. Then the statement “b | a or b is not prime,”
is automatically true. ■

Chapter 5 Exercises
1. Proposition Suppose n ∈Z. If n2 is even, then n is even.

Proof. (Contrapositive) Suppose n is not even. Then n is odd, so n = 2a+1 for
some integer a, by definition of an odd number. Thus n2 = (2a+1)2 = 4a2+4a+1=
2(2a2+2a)+1. Consequently n2 = 2b+1, where b is the integer 2a2+2a, so n2 is
odd. Therefore n2 is not even. ■

3. Proposition Suppose a,b ∈Z. If a2(b2 −2b) is odd, then a and b are odd.

Proof. (Contrapositive) Suppose it is not the case that a and b are odd. Then,
by DeMorgan’s law, at least one of a and b is even. Let us look at these cases
separately.
Case 1. Suppose a is even. Then a = 2c for some integer c. Thus a2(b2 −2b)
= (2c)2(b2 −2b)= 2(2c2(b2 −2b)), which is even.
Case 2. Suppose b is even. Then b = 2c for some integer c. Thus a2(b2 −2b)
= a2((2c)2 −2(2c))= 2(a2(2c2 −2c)), which is even.
(A third case involving a and b both even is unnecessary, for either of the two
cases above cover this case.) Thus in either case a2(b2 −2b) is even, so it is not
odd. ■

5. Proposition Suppose x ∈R. If x2 +5x < 0 then x < 0.

Proof. (Contrapositive) Suppose it is not the case that x < 0, so x ≥ 0. Then
neither x2 nor 5x is negative, so x2+5x ≥ 0. Thus it is not true that x2+5x < 0. ■
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7. Proposition Suppose a,b ∈Z. If both ab and a+b are even, then both a and
b are even.

Proof. (Contrapositive) Suppose it is not the case that both a and b are even.
Then at least one of them is odd. There are three cases to consider.
Case 1. Suppose a is even and b is odd. Then there are integers c and
d for which a = 2c and b = 2d +1. Then ab = 2c(2d +1), which is even; and
a+ b = 2c+2d+1 = 2(c+d)+1, which is odd. Thus it is not the case that both
ab and a+b are even.
Case 2. Suppose a is odd and b is even. Then there are integers c and d for
which a = 2c+1 and b = 2d. Then ab = (2c+1)(2d) = 2(d(2c+1)), which is even;
and a+ b = 2c+1+2d = 2(c+d)+1, which is odd. Thus it is not the case that
both ab and a+b are even.
Case 3. Suppose a is odd and b is odd. Then there are integers c and d for
which a = 2c+1 and b = 2d +1. Then ab = (2c+1)(2d +1) = 4cd +2c+2d +1 =
2(2cd+ c+d)+1, which is odd; and a+ b = 2c+1+2d+1 = 2(c+d+1), which is
even. Thus it is not the case that both ab and a+b are even.
These cases show that it is not the case that ab and a+b are both even. (Note
that unlike Exercise 3 above, we really did need all three cases here, for each
case involved specific parities for both a and b.) ■

9. Proposition Suppose n ∈Z. If 3 - n2, then 3 - n.

Proof. (Contrapositive) Suppose it is not the case that 3 - n, so 3 | n. This means
that n = 3a for some integer a. Consequently n2 = 9a2, from which we get
n2 = 3(3a2). This shows that there in an integer b = 3a2 for which n2 = 3b, which
means 3 | n2. Therefore it is not the case that 3 - n2. ■

11. Proposition Suppose x, y ∈Z. If x2(y+3) is even, then x is even or y is odd.

Proof. (Contrapositive) Suppose it is not the case that x is even or y is odd.
Using DeMorgan’s law, this means x is not even and y is not odd, which is to
say x is odd and y is even. Thus there are integers a and b for which x = 2a+1
and y = 2b. Consequently x2(y+ 3) = (2a+ 1)2(2b+ 3) = (4a2 + 4a+ 1)(2b+ 3) =
8a2b+8ab+2b+12a2 +12a+3= 8a2b+8ab+2b+12a2 +12a+2+1=
2(4a2b+4ab+b+6a2+6a+1)+1. This shows x2(y+3)= 2c+1 for c = 4a2b+4ab+
b+6a2 +6a+1 ∈Z. Consequently, x2(y+3) is not even. ■

13. Proposition Suppose x ∈R. If x5 +7x3 +5x ≥ x4 + x2 +8, then x ≥ 0.

Proof. (Contrapositive) Suppose it is not true that x ≥ 0. Then x < 0, that is
x is negative. Consequently, the expressions x5, 7x3 and 5x are all negative
(note the odd powers) so x5 +7x3 +5x < 0. Similarly the terms x4, x2, and 8
are all positive (note the even powers), so 0 < x4 + x2 +8. From this we get
x5 +7x3 +5x < x4 + x2 +8, so it is not true that x5 +7x3 +5x ≥ x4 + x2 +8. ■
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15. Proposition Suppose x ∈Z. If x3 −1 is even, then x is odd.

Proof. (Contrapositive) Suppose x is not odd. Thus x is even, so x = 2a for some
integer a. Then x3 −1= (2a)3 −1 = 8a3 −1= 8a3 −2+1 = 2(4a3 −1)+1. Therefore
x3 −1= 2b+1 where b = 4a3 −1 ∈Z, so x3 −1 is odd. Thus x3 −1 is not even. ■

17. Proposition If n is odd, then 8 | (n2 −1).

Proof. (Direct) Suppose n is odd, so n = 2a+1 for some integer a. Then n2 −1=
(2a+1)2−1= 4a2+4a = 4(a2+a)= 4a(a+1). So far we have n2−1= 4a(a+1), but
we want a factor of 8, not 4. But notice that one of a or a+1 must be even, so
a(a+1) is even and hence a(a+1)= 2c for some integer c. Now we have n2 −1=
4a(a+1)= 4(2c)= 8c. But n2 −1= 8c means 8 | (n2 −1). ■

19. Proposition Let a,b ∈Z and n ∈N. If a ≡ b (mod n) and a ≡ c (mod n), then
c ≡ b (mod n).

Proof. (Direct) Suppose a ≡ b (mod n) and a ≡ c (mod n).
This means n | (a−b) and n | (a− c).
Thus there are integers d and e for which a−b = nd and a− c = ne.
Subtracting the second equation from the first gives c−b = nd−ne.
Thus c−b = n(d− e), so n | (c−b) by definition of divisibility.
Therefore c ≡ b (mod n) by definition of congruence modulo n. ■

21. Proposition Let a,b ∈Z and n ∈N. If a ≡ b (mod n), then a3 ≡ b3 (mod n).

Proof. (Direct) Suppose a ≡ b (mod n). This means n | (a− b), so there is an
integer c for which a−b = nc. Then:

a−b = nc

(a−b)(a2 +ab+b2) = nc(a2 +ab+b2)

a3 +a2b+ab2 −ba2 −ab2 −b3 = nc(a2 +ab+b2)

a3 −b3 = nc(a2 +ab+b2).

Since a2 +ab+ b2 ∈Z, the equation a3 − b3 = nc(a2 +ab+ b2) implies n | (a3 − b3),
and therefore a3 ≡ b3 (mod n). ■

23. Proposition Let a,b, c ∈Z and n ∈N. If a ≡ b (mod n), then ca ≡ cb (mod n).

Proof. (Direct) Suppose a ≡ b (mod n). This means n | (a− b), so there is an
integer d for which a−b = nd. Multiply both sides of this by c to get ac−bc = ndc.
Consequently, there is an integer e = dc for which ac− bc = ne, so n | (ac− bc)
and consequently ac ≡ bc (mod n). ■

25. If n ∈N and 2n −1 is prime, then n is prime.

Proof. Assume n is not prime. Write n = ab for some a,b > 1. Then 2n −1 =
2ab−1= (

2b−1
)(

2ab−b+2ab−2b+2ab−3b+·· ·+2ab−ab)
. Hence 2n−1 is composite. ■
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27. If a ≡ 0 (mod 4) or a ≡ 1 (mod 4) then
(a
2
)
is even.

Proof. We prove this directly. Assume a ≡ 0 (mod 4). Then
(a
2
) = a(a−1)

2 . Since
a = 4k for some k ∈N, we have

(a
2
)= 4k(4k−1)

2 = 2k(4k−1). Hence
(a
2
)
is even.

Now assume a ≡ 1 (mod 4). Then a = 4k+1 for some k ∈N. Hence
(a
2
)= (4k+1)(4k)

2 =
2k(4k+1). Hence,

(a
2
)
is even. This proves the result. ■

29. If integers a and b are not both zero, then gcd(a,b)= gcd(a−b,b).

Proof. (Direct) Suppose integers a and b are not both zero. Let d = gcd(a,b).
Because d is a divisor of both a and b, we have a = dx and b = d y for some
integers x and y. Then a− b = dx−d y = d(x− y), so it follows that d is also a
common divisor of a−b and b. Therefore it can’t be greater than the greatest
common divisor of a−b and b, which is to say gcd(a,b)= d ≤ gcd(a−b,b).

Now let e = gcd(a−b,b). Then e divides both a−b and b, that is, a−b = ex and
b = ey for integers x and y. Then a = (a−b)+b = ex+ ey= e(x+ y), so now we see
that e is a divisor of both a and b. Thus it is not more than their greatest
common divisor, that is, gcd(a−b,b)= e ≤ gcd(a,b).

The above two paragraphs have given gcd(a,b)≤ gcd(a−b,b) and gcd(a−b,b)≤
gcd(a,b). Thus gcd(a,b)= gcd(a−b,b).

■

31. Suppose the division algorithm applied to a and b yields a = qb+ r. Then
gcd(a,b)= gcd(r,b).

Proof. Suppose a = qb+ r. Let d = gcd(a,b), so d is a common divisor of a and b;
thus a = dx and b = d y for some integers x and y. Then dx = a = qb+ r = qdy+ r,
hence dx = qdy+ r, and so r = dx− qdy= d(x− qy). Thus d is a divisor of r (and
also of b), so gcd(a,b)= d ≤ gcd(r,b).

On the other hand, let e = gcd(r,b), so r = ex and b = ey for some integers x and
y. Then a = qb+ r = qey+ ex = e(qy+ x). Hence e is a divisor of a (and of course
also of b) so gcd(r,b)= e ≤ gcd(a,b).

We’ve now shown gcd(a,b)≤ gcd(r,b) and gcd(r,b)≤ gcd(a,b), so gcd(r,b)= gcd(a,b).
■

Chapter 6 Exercises
1. Suppose n is an integer. If n is odd, then n2 is odd.

Proof. Suppose for the sake of contradiction that n is odd and n2 is not odd.
Then n2 is even. Now, since n is odd, we have n = 2a+1 for some integer a.
Thus n2 = (2a+1)2 = 4a2 +4a+1= 2(2a2 +2a)+1. This shows n2 = 2b+1, where
b is the integer b = 2a2 +2a. Therefore we have n2 is odd and n2 is even, a
contradiction. ■
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3. Prove that 3p2 is irrational.

Proof. Suppose for the sake of contradiction that 3p2 is not irrational. Therefore
it is rational, so there exist integers a and b for which 3p2= a

b . Let us assume
that this fraction is reduced, so a and b are not both even. Now we have
3p2

3 = ( a
b
)3, which gives 2 = a3

b3 , or 2b3 = a3. From this we see that a3 is even,
from which we deduce that a is even. (For if a were odd, then a3 = (2c+1)3 =
8c3 +12c2 +6c+1= 2(4c3 +6c2 +3c)+1 would be odd, not even.) Since a is even,
it follows that a = 2d for some integer d. The equation 2b3 = a3 from above then
becomes 2b3 = (2d)3, or 2b3 = 8d3. Dividing by 2, we get b3 = 4d3, and it follows
that b3 is even. Thus b is even also. (Using the same argument we used when
a3 was even.) At this point we have discovered that both a and b are even,
contradicting the fact (observed above) that the a and b are not both even. ■
Here is an alternative proof.

Proof. Suppose for the sake of contradiction that 3p2 is not irrational. Therefore
there exist integers a and b for which 3p2= a

b . Cubing both sides, we get 2= a3

b3 .
From this, a3 = b3 +b3, which contradicts Fermat’s last theorem. ■

5. Prove that
p

3 is irrational.

Proof. Suppose for the sake of contradiction that
p

3 is not irrational. Therefore
it is rational, so there exist integers a and b for which

p
3= a

b . Let us assume
that this fraction is reduced, so a and b have no common factor. Notice thatp

3
2 = ( a

b
)2, so 3= a2

b2 , or 3b2 = a2. This means 3 | a2.
Now we are going to show that if a ∈Z and 3 | a2, then 3 | a. (This is a proof-
within-a-proof.) We will use contrapositive proof to prove this conditional
statement. Suppose 3 - a. Then there is a remainder of either 1 or 2 when 3 is
divided into a.
Case 1. There is a remainder of 1 when 3 is divided into a. Then a = 3m+1
for some integer m. Consequently, a2 = 9m2 +6m+1= 3(3m2 +2m)+1, and this
means 3 divides into a2 with a remainder of 1. Thus 3 - a2.
Case 2. There is a remainder of 2 when 3 is divided into a. Then a = 3m+2
for some integer m. Consequently, a2 = 9m2 + 12m+ 4 = 9m2 + 12m+ 3+ 1 =
3(3m2+4m+1)+1, and this means 3 divides into a2 with a remainder of 1. Thus
3 - a2.
In either case we have 3 - a2, so we’ve shown 3 - a implies 3 - a2. Therefore, if
3 | a2, then 3 | a.
Now go back to 3 | a2 in the first paragraph. This combined with the result of
the second paragraph implies 3 | a, so a = 3d for some integer d. Now also in the
first paragraph we had 3b2 = a2, which now becomes 3b2 = (3d)2 or 3b2 = 9d2, so
b2 = 3d2. But this means 3 | b2, and the second paragraph implies 3 | b. Thus
we have concluded that 3 | a and 3 | b, but this contradicts the fact that the
fraction a

b is reduced. ■
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7. If a,b ∈Z, then a2 −4b−3 6= 0.

Proof. Suppose for the sake of contradiction that a,b ∈Z but a2−4b−3= 0. Then
we have a2 = 4b+3= 2(2b+1)+1, which means a2 is odd. Therefore a is odd also,
so a = 2c+1 for some integer c. Plugging this back into a2 −4b−3= 0 gives us

(2c+1)2 −4b−3 = 0

4c2 +4c+1−4b−3 = 0

4c2 +4c−4b = 2

2c2 +2c−2b = 1

2(c2 + c−b) = 1.

From this last equation, we see that 1 is an even number, a contradiction. ■

9. Suppose a,b ∈ R and a 6= 0. If a is rational and ab is irrational, then b is
irrational.

Proof. Suppose for the sake of contradiction that a is rational and ab is irra-
tional and b is not irrational. Thus we have a and b rational, and ab irrational.
Since a and b are rational, we know there are integers c,d, e, f for which a = c

d
and b = e

f . Then ab = ce
d f , and since both ce and d f are integers, it follows

that ab is rational. But this is a contradiction because we started out with ab
irrational. ■

11. There exist no integers a and b for which 18a+6b = 1.

Proof. Suppose for the sake of contradiction that there do exist integers a
and b for which 18a+6b = 1. Then 1 = 2(9a+3b), which means 1 is even, a
contradiction. ■

13. For every x ∈ [π/2,π], sin x−cos x ≥ 1.

Proof. Suppose for the sake of contradiction that x ∈ [π/2,π], but sin x−cos x < 1.
Since x ∈ [π/2,π], we know sin x ≥ 0 and cos x ≤ 0, so sin x− cos x ≥ 0. Therefore
we have 0 ≤ sin x− cos x < 1. Now the square of any number between 0 and
1 is still a number between 0 and 1, so we have 0 ≤ (sin x− cos x)2 < 1, or 0 ≤
sin2 x−2sin xcos x+cos2 x < 1. Using the fact that sin2 x+cos2 x = 1, this becomes
0≤−2sin xcos x+1< 1. Subtracting 1, we obtain −2sin xcos x < 0. But above we
remarked that sin x ≥ 0 and cos x ≤ 0, and hence −2sin xcos x ≥ 0. We now have
the contradiction −2sin xcos x < 0 and −2sin xcos x ≥ 0. ■

15. If b ∈Z and b - k for every k ∈N, then b = 0.

Proof. Suppose for the sake of contradiction that b ∈Z and b - k for every k ∈N,
but b 6= 0.
Case 1. Suppose b > 0. Then b ∈N, so b|b, contradicting b - k for every k ∈N.
Case 2. Suppose b < 0. Then −b ∈N, so b|(−b), again a contradiction ■
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17. For every n ∈Z, 4 - (n2 +2).

Proof. Assume there exists n ∈Z with 4 | (n2+2). Then for some k ∈Z, 4k = n2+2
or 2k = n2 +2(1− k). If n is odd, this means 2k is odd, and we’ve reached a
contradiction. If n is even then n = 2 j and we get k = 2 j2 +1−k for some j ∈Z.
Hence 2(k− j2)= 1, so 1 is even, a contradiction. ■

Remark. It is fairly easy to see that two more than a perfect square is always
either 2 (mod 4) or 3 (mod 4). This would end the proof immediately.

19. The product of 5 consecutive integers is a multiple of 120.

Proof. Given any collection of 5 consecutive integers, at least one must be a
multiple of two, at least one must be a multiple of three, at least one must be
a multiple of four and at least one must be a multiple of 5. Hence the product
is a multiple of 5 ·4 ·3 ·2= 120. In particular, the product is a multiple of 60. ■

21. Hints for Exercises 20–23. For Exercises 20, first show that the equation
a2 + b2 = 3c2 has no solutions (other than the trivial solution (a,b, c) = (0,0,0))
in the integers. To do this, investigate the remainders of a sum of squares
(mod 4). After you’ve done this, prove that the only solution is indeed the trivial
solution.
Now, assume that the equation x2 + y2 −3= 0 has a rational solution. Use the
definition of rational numbers to yield a contradiction.

Chapter 7 Exercises
1. Suppose x ∈Z. Then x is even if and only if 3x+5 is odd.

Proof. We first use direct proof to show that if x is even, then 3x+5 is odd.
Suppose x is even. Then x = 2n for some integer n. Thus 3x+5 = 3(2n)+5 =
6n+5 = 6n+4+1 = 2(3n+2)+1. Thus 3x+5 is odd because it has form 2k+1,
where k = 3n+2 ∈Z.
Conversely, we need to show that if 3x+5 is odd, then x is even. We will
prove this using contrapositive proof. Suppose x is not even. Then x is odd, so
x = 2n+1 for some integer n. Thus 3x+5= 3(2n+1)+5= 6n+8= 2(3n+4). This
means says 3x+5 is twice the integer 3n+4, so 3x+5 is even, not odd. ■

3. Given an integer a, then a3 +a2 +a is even if and only if a is even.

Proof. First we will prove that if a3+a2+a is even then a is even. This is done
with contrapositive proof. Suppose a is not even. Then a is odd, so there is an
integer n for which a = 2n+1. Then

a3 +a2 +a = (2n+1)3 + (2n+1)2 + (2n+1)

= 8n3 +12n2 +6n+1+4n2 +4n+1+2n+1

= 8n3 +16n2 +12n+2+1

= 2(4n3 +8n2 +6n+1)+1.



266 Solutions

This expresses a3 +a2 +a as twice an integer plus 1, so a3 +a2 +a is odd, not
even. We have now shown that if a3 +a2 +a is even then a is even.

Conversely, we need to show that if a is even, then a3+a2+a is even. We will use
direct proof. Suppose a is even, so a = 2n for some integer n. Then a3 +a2 +a =
(2n)3 + (2n)2 +2n = 8n3 +4n2 +2n = 2(4n3 +2n2 +n). Therefore, a3 +a2 +a is even
because it’s twice an integer. ■

5. An integer a is odd if and only if a3 is odd.

Proof. Suppose that a is odd. Then a = 2n+1 for some integer n, and a3 =
(2n+1)3 = 8n3 +12n2 +6n+1= 2(4n3 +6n2 +3n)+1. This shows that a3 is twice
an integer, plus 1, so a3 is odd. Thus we’ve proved that if a is odd then a3 is
odd.

Conversely we need to show that if a3 is odd, then a is odd. For this we employ
contrapositive proof. Suppose a is not odd. Thus a is even, so a = 2n for some
integer n. Then a3 = (2n)3 = 8n3 = 2(4n3) is even (not odd). ■

7. Suppose x, y ∈R. Then (x+ y)2 = x2 + y2 if and only if x = 0 or y= 0.

Proof. First we prove with direct proof that if (x+ y)2 = x2 + y2, then x = 0 or
y= 0. Suppose (x+ y)2 = x2+ y2. From this we get x2+2xy+ y2 = x2+ y2, so 2xy= 0,
and hence xy= 0. Thus x = 0 or y= 0.

Conversely, we need to show that if x = 0 or y = 0, then (x+ y)2 = x2 + y2. This
will be done with cases.
Case 1. If x = 0 then (x+ y)2 = (0+ y)2 = y2 = 02 + y2 = x2 + y2.
Case 2. If y= 0 then (x+ y)2 = (x+0)2 = x2 = x2 +02 = x2 + y2.
Either way, we have (x+ y)2 = x2 + y2. ■

9. Suppose a ∈Z. Prove that 14 | a if and only if 7 | a and 2 | a.

Proof. First we prove that if 14 | a, then 7 | a and 2 | a. Direct proof is used.
Suppose 14 | a. This means a = 14m for some integer m. Therefore a = 7(2m),
which means 7 | a, and also a = 2(7m), which means 2 | a. Thus 7 | a and 2 | a.

Conversely, we need to prove that if 7 | a and 2 | a, then 14 | a. Once again direct
proof if used. Suppose 7 | a and 2 | a. Since 2 | a it follows that a = 2m for some
integer m, and that in turn implies that a is even. Since 7 | a it follows that
a = 7n for some integer n. Now, since a is known to be even, and a = 7n, it
follows that n is even (if it were odd, then a = 7n would be odd). Thus n = 2p for
an appropriate integer p, and plugging n = 2p back into a = 7n gives a = 7(2p),
so a = 14p. Therefore 14 | a. ■
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11. Suppose a,b ∈Z. Prove that (a−3)b2 is even if and only if a is odd or b is even.

Proof. First we will prove that if (a−3)b2 is even, then a is odd or b is even.
For this we use contrapositive proof. Suppose it is not the case that a is
odd or b is even. Then by DeMorgan’s law, a is even and b is odd. Thus
there are integers m and n for which a = 2m and b = 2n+ 1. Now observe
(a−3)b2 = (2m−3)(2n+1)2 = (2m−3)(4n2+4n+1)= 8mn2+8mn+2m−12n2−12n−3=
8mn2 +8mn+2m−12n2 −12n−4+1 = 2(4mn2 +4mn+m−6n2 −6n−2)+1. This
shows (a−3)b2 is odd, so it’s not even.

Conversely, we need to show that if a is odd or b is even, then (a−3)b2 is even.
For this we use direct proof, with cases.
Case 1. Suppose a is odd. Then a = 2m+1 for some integer m. Thus (a−3)b2 =
(2m+1−3)b2 = (2m−2)b2 = 2(m−1)b2. Thus in this case (a−3)b2 is even.
Case 2. Suppose b is even. Then b = 2n for some integer n. Thus (a−3)b2 =
(a−3)(2n)2 = (a−3)4n2 = 2(a−3)2n2 =. Thus in this case (a−3)b2 is even.
Therefore, in any event, (a−3)b2 is even. ■

13. Suppose a,b ∈Z. If a+b is odd, then a2 +b2 is odd.
Hint: Use direct proof. Suppose a+b is odd. Argue that this means a and b
have opposite parity. Then use cases.

15. Suppose a,b ∈Z. Prove that a+b is even if and only if a and b have the same
parity.

Proof. First we will show that if a+b is even, then a and b have the same parity.
For this we use contrapositive proof. Suppose it is not the case that a and b
have the same parity. Then one of a and b is even and the other is odd. Without
loss of generality, let’s say that a is even and b is odd. Thus there are integers
m and n for which a = 2m and b = 2n+1. Then a+b = 2m+2n+1= 2(m+n)+1,
so a+b is odd, not even.

Conversely, we need to show that if a and b have the same parity, then a+b is
even. For this, we use direct proof with cases. Suppose a and b have the same
parity.
Case 1. Both a and b are even. Then there are integers m and n for which
a = 2m and b = 2n, so a+b = 2m+2n = 2(m+n) is clearly even.
Case 2. Both a and b are odd. Then there are integers m and n for which
a = 2m+1 and b = 2n+1, so a+b = 2m+1+2n+1= 2(m+n+1) is clearly even.
Either way, a+b is even. This completes the proof. ■

17. There is a prime number between 90 and 100.

Proof. Simply observe that 97 is prime. ■
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19. If n ∈N, then 20 +21 +22 +23 +24 +·· ·+2n = 2n+1 −1.

Proof. We use direct proof. Suppose n ∈N. Let S be the number
S = 20 +21 +22 +23 +24 +·· ·+2n−1 +2n. (1)

In what follows, we will solve for S and show S = 2n+1 −1. Multiplying both
sides of (1) by 2 gives

2S = 21 +22 +23 +24 +25 +·· ·+2n +2n+1. (2)
Now subtract Equation (1) from Equation (2) to obtain 2S −S = −20 + 2n+1,
which simplifies to S = 2n+1 −1. Combining this with Equation (1) produces
20 +21 +22 +23 +24 +·· ·+2n = 2n+1 −1, so the proof is complete. ■

21. Every real solution of x3 + x+3= 0 is irrational.

Proof. Suppose for the sake of contradiction that this polynomial has a rational
solution a

b . We may assume that this fraction is fully reduced, so a and b are
not both even. We have

( a
b
)3 + a

b +3= 0. Clearing the denominator gives

a3 +ab2 +3b3 = 0.

Consider two cases: First, if both a and b are odd, the left-hand side is a sum
of three odds, which is odd, meaning 0 is odd, a contradiction. Second, if one
of a and b is odd and the other is even, then the middle term of a3 +ab2 +3b3

is even, while a3 and 3b2 have opposite parity. Then a3 +ab2 +3b3 is the sum
of two evens and an odd, which is odd, again contradicting the fact that 0 is
even. ■

23. Suppose a,b and c are integers. If a | b and a | (b2 − c), then a | c.

Proof. (Direct) Suppose a | b and a | (b2 − c). This means that b = ad and
b2 − c = ae for some integers d and e. Squaring the first equation produces
b2 = a2d2. Subtracting b2 − c = ae from b2 = a2d2 gives c = a2d2 −ae = a(ad2 − e).
As ad2 − e ∈Z, it follows that a | c. ■

25. If p > 1 is an integer and n - p for each integer n for which 2≤ n ≤pp, then p is
prime.

Proof. (Contrapositive) Suppose that p is not prime, so it factors as p = mn for
1< m,n < p.

Observe that it is not the case that both m >pp and n >pp, because if this were
true the inequalities would multiply to give mn >pppp = p, which contradicts
p = mn.

Therefore m ≤pp or n ≤pp. Without loss of generality, say n ≤pp. Then the
equation p = mn gives n | p, with 1< n ≤pp. Therefore it is not true that n - p
for each integer n for which 2≤ n ≤pp. ■
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27. Suppose a,b ∈Z. If a2 +b2 is a perfect square, then a and b are not both odd.

Proof. (Contradiction) Suppose a2+b2 is a perfect square, and a and b are both
odd. As a2+b2 is a perfect square, say c is the integer for which c2 = a2+b2. As
a and b are odd, we have a = 2m+1 and b = 2n+1 for integers m and n. Then

c2 = a2 +b2 = (2m+1)2 + (2n+1)2 = 4(m2 +n2 +mn)+2.

This is even, so c is even also; let c = 2k. Now the above equation results in
(2k)2 = 4(m2+n2+mn)+2, which simplifies to 2k2 = 2(m2+n2+mn)+1. Thus 2k2

is both even and odd, a contradiction. ■

29. If a | bc and gcd(a,b)= 1, then a | c.

Proof. (Direct) Suppose a | bc and gcd(a,b)= 1. The fact that a | bc means bc = az
for some integer z. The fact that gcd(a,b) = 1 means that ax+ by = 1 for some
integers x and y (by Proposition 7.1 on page 126). From this we get acx+bcy= c;
substituting bc = az yields acx+azy= c, that is, a(cx+zy)= c. Therefore a | c. ■

31. If n ∈Z, then gcd(n,n+1)= 1.

Proof. Suppose d is a positive integer that is a common divisor of n and n+1.
Then n = dx and n+1= d y for integers x and y. Then 1= (n+1)−n = dy−dx =
d(y− x). Now, 1 = d(y− x) is only possible if d = ±1 and y− x = ±1. Thus the
greatest common divisor of n and n+1 can be no greater than 1. But 1 does
divide both n and n+1, so gcd(n,n+1)= 1. ■

33. If n ∈Z, then gcd(2n+1,4n2 +1)= 1.

Proof. Note that 4n2 +1= (2n+1)(2n−1)+2. Therefore, it suffices to show that
gcd(2n+1, (2n+1)(2n−1)+2) = 1. Let d be a common positive divisor of both
2n+1 and (2n+1)(2n−1)+2, so 2n+1= dx and (2n+1)(2n−1)+2= dy for integers
x and y. Substituting the first equation into the second gives dx(2n−1)+2= d y,
so 2= d y−dx(2n−1)= d(y−2nx− x). This means d divides 2, so d equals 1 or
2. But the equation 2n+1= dx means d must be odd. Therefore d = 1, that is,
gcd(2n+1, (2n+1)(2n−1)+2)= 1. ■

35. Suppose a,b ∈N. Then a = gcd(a,b) if and only if a | b.

Proof. Suppose a = gcd(a,b). This means a is a divisor of both a and b. In
particular a | b.

Conversely, suppose a | b. Then a divides both a and b, so a ≤ gcd(a,b). On the
other hand, since gcd(a,b) divides a, we have a = gcd(a,b) · x for some integer x.
As all integers involved are positive, it follows that a ≥ gcd(a,b).

It has been established that a ≤ gcd(a,b) and a ≥ gcd(a,b). Thus a = gcd(a,b). ■
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Chapter 8 Exercises
1. Prove that {12n : n ∈Z}⊆ {2n : n ∈Z}∩ {3n : n ∈Z}.

Proof. Suppose a ∈ {12n : n ∈Z}. This means a = 12n for some n ∈Z. Therefore
a = 2(6n) and a = 3(4n). From a = 2(6n), it follows that a is multiple of 2, so
a ∈ {2n : n ∈Z}. From a = 3(4n), it follows that a is multiple of 3, so a ∈ {3n : n ∈Z}.
Thus by definition of the intersection of two sets, we have a ∈ {2n : n ∈Z}∩
{3n : n ∈Z}. Thus {12n : n ∈Z}⊆ {2n : n ∈Z}∩ {3n : n ∈Z}. ■

3. If k ∈Z, then {n ∈Z : n | k}⊆ {
n ∈Z : n | k2}

.

Proof. Suppose k ∈Z. We now need to show {n ∈Z : n | k} ⊆ {
n ∈Z : n | k2}

.
Suppose a ∈ {n ∈Z : n | k}. Then it follows that a | k, so there is an integer c for
which k = ac. Then k2 = a2c2. Therefore k2 = a(ac2), and from this the definition
of divisibility gives a | k2. But a | k2 means that a ∈ {

n ∈Z : n | k2}
. We have now

shown {n ∈Z : n | k} ⊆ {
n ∈Z : n | k2}

. ■

5. If p and q are integers, then {pn : n ∈N}∩ {qn : n ∈N} 6= ;.

Proof. Suppose p and q are integers. Consider the integer pq. Observe that
pq ∈ {pn : n ∈N} and pq ∈ {qn : n ∈N}, so pq ∈ {pn : n ∈N}∩ {qn : n ∈N}. Therefore
{pn : n ∈N}∩ {qn : n ∈N} 6= ;. ■

7. Suppose A,B and C are sets. If B ⊆ C, then A×B ⊆ A×C.

Proof. This is a conditional statement, and we’ll prove it with direct proof.
Suppose B ⊆ C. (Now we need to prove A×B ⊆ A×C.)

Suppose (a,b) ∈ A×B. Then by definition of the Cartesian product we have a ∈ A
and b ∈ B. But since b ∈ B and B ⊆ C, we have b ∈ C. Since a ∈ A and b ∈ C, it
follows that (a,b) ∈ A×C. Now we’ve shown (a,b) ∈ A×B implies (a,b) ∈ A×C, so
A×B ⊆ A×C.

In summary, we’ve shown that if B ⊆ C, then A×B ⊆ A×C. This completes the
proof. ■

9. If A,B and C are sets then A∩ (B∪C)= (A∩B)∪ (A∩C).

Proof. We use the distributive law P ∧ (Q∨R) = (P ∧Q)∨ (P ∧R) from page 50.

A∩ (B∪C) = {x : x ∈ A ∧ x ∈ B∪C} (def. of intersection)
= {x : x ∈ A ∧ (x ∈ B ∨ x ∈ C)} (def. of union)
= {

x :
(
x ∈ A ∧ x ∈ B

) ∨ (
x ∈ A ∧ x ∈ C

)}
(distributive law)

= {x : (x ∈ A∩B) ∨ (x ∈ A∩C)} (def. of intersection)
= (A∩B)∪ (A∩C) (def. of union)

The proof is complete. ■
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11. If A and B are sets in a universal set U, then A∪B = A∩B.

Proof. Just observe the following sequence of equalities.
A∪B =U − (A∪B) (def. of complement)

= {x : (x ∈U)∧ (x ∉ A∪B)} (def. of −)
= {x : (x ∈U)∧∼ (x ∈ A∪B)}
= {x : (x ∈U)∧∼ ((x ∈ A)∨ (x ∈ B))} (def. of ∪)
= {x : (x ∈U)∧ (∼ (x ∈ A)∧∼ (x ∈ B))} (DeMorgan)
= {x : (x ∈U)∧ (x ∉ A)∧ (x ∉ B)}
= {x : (x ∈U)∧ (x ∈U)∧ (x ∉ A)∧ (x ∉ B)} (x ∈U)= (x ∈U)∧ (x ∈U)
= {x : ((x ∈U)∧ (x ∉ A))∧ ((x ∈U)∧ (x ∉ B))} (regroup)
= {x : (x ∈U)∧ (x ∉ A)}∩ {x : (x ∈U)∧ (x ∉ B)} (def. of ∩)
= (U − A)∩ (U −B) (def. of −)
= A∩B (def. of complement)

The proof is complete. ■

13. If A,B and C are sets, then A− (B∪C)= (A−B)∩ (A−C).

Proof. Just observe the following sequence of equalities.
A− (B∪C) = {x : (x ∈ A)∧ (x ∉ B∪C)} (def. of −)

= {x : (x ∈ A)∧∼ (x ∈ B∪C)}
= {x : (x ∈ A)∧∼ ((x ∈ B)∨ (x ∈ C))} (def. of ∪)
= {x : (x ∈ A)∧ (∼ (x ∈ B)∧∼ (x ∈ C))} (DeMorgan)
= {x : (x ∈ A)∧ (x ∉ B)∧ (x ∉ C)}
= {x : (x ∈ A)∧ (x ∈ A)∧ (x ∉ B)∧ (x ∉ C)} (x ∈ A)= (x ∈ A)∧ (x ∈ A)
= {x : ((x ∈ A)∧ (x ∉ B))∧ ((x ∈ A)∧ (x ∉ C))} (regroup)
= {x : (x ∈ A)∧ (x ∉ B)}∩ {x : (x ∈ A)∧ (x ∉ C)} (def. of ∩)
= (A−B)∩ (A−C) (def. of −)

The proof is complete. ■

15. If A,B and C are sets, then (A∩B)−C = (A−C)∩ (B−C).

Proof. Just observe the following sequence of equalities.
(A∩B)−C = {x : (x ∈ A∩B)∧ (x ∉ C)} (def. of −)

= {x : (x ∈ A)∧ (x ∈ B)∧ (x ∉ C)} (def. of ∩)
= {x : (x ∈ A)∧ (x ∉ C)∧ (x ∈ B)∧ (x ∉ C)} (regroup)
= {x : ((x ∈ A)∧ (x ∉ C))∧ ((x ∈ B)∧ (x ∉ C))} (regroup)
= {x : (x ∈ A)∧ (x ∉ C)}∩ {x : (x ∈ B)∧ (x ∉ C)} (def. of ∩)
= (A−C)∩ (B−C) (def. of ∩)

The proof is complete. ■

17. If A,B and C are sets, then A× (B∩C)= (A×B)∩ (A×C).

Proof. See Example 8.12. ■
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19. Prove that {9n : n ∈Z}⊆ {3n : n ∈Z}, but {9n : n ∈Z} 6= {3n : n ∈Z}.

Proof. Suppose a ∈ {9n : n ∈Z}. This means a = 9n for some integer n ∈Z. Thus
a = 9n = (32)n = 32n. This shows a is an integer power of 3, so a ∈ {3n : n ∈Z}.
Therefore a ∈ {9n : n ∈Z} implies a ∈ {3n : n ∈Z}, so {9n : n ∈Z}⊆ {3n : n ∈Z}.

But notice {9n : n ∈Z} 6= {3n : n ∈Z} as 3 ∈ {3n : n ∈Z}, but 3 ∉ {9n : n ∈Z}. ■

21. Suppose A and B are sets. Prove A ⊆ B if and only if A−B =;.

Proof. First we will prove that if A ⊆ B, then A−B =;. Contrapositive proof is
used. Suppose that A−B 6= ;. Thus there is an element a ∈ A−B, which means
a ∈ A but a ∉ B. Since not every element of A is in B, we have A 6⊆ B.

Conversely, we will prove that if A−B =;, then A ⊆ B. Again, contrapositive
proof is used. Suppose A 6⊆ B. This means that it is not the case that every
element of A is an element of B, so there is an element a ∈ A with a ∉ B.
Therefore we have a ∈ A−B, so A−B 6= ;. ■

23. For each a ∈R, let Aa = {
(x,a(x2 −1)) ∈R2 : x ∈R}

. Prove that
⋂
a∈R

Aa = {(−1,0), (1,0))}.

Proof. First we will show that {(−1,0), (1,0))}⊆ ⋂
a∈R

Aa. Notice that for any a ∈R,
we have (−1,0) ∈ Aa because Aa contains the ordered pair (−1,a((−1)2−1)= (−1,0).
Similarly (1,0) ∈ Aa. Thus each element of {(−1,0), (1,0))} belongs to every set
Aa, so every element of

⋂
a∈R

Aa, so {(−1,0), (1,0))}⊆ ⋂
a∈R

Aa.

Now we will show
⋂
a∈R

Aa ⊆ {(−1,0), (1,0))}. Suppose (c,d) ∈ ⋂
a∈R

Aa. This means

(c,d) is in every set Aa. In particular (c,d) ∈ A0 =
{
(x,0(x2 −1)) : x ∈R}= {(x,0) : x ∈R}.

It follows that d = 0. Then also we have (c,d)= (c,0) ∈ A1 = {
(x,1(x2 −1)) : x ∈R}={

(x, x2 −1) : x ∈R}
. Therefore (c,0) has the form (c, c2 −1), that is (c,0)= (c, c2 −1).

From this we get c2 −1 = 0, so c = ±1. Therefore (c,d) = (1,0) or (c,d) = (−1,0),
so (c,d) ∈ {(−1,0), (1,0))}. This completes the demonstration that (c,d) ∈ ⋂

a∈R
Aa

implies (c,d) ∈ {(−1,0), (1,0))}, so it follows that
⋂
a∈R

Aa ⊆ {(−1,0), (1,0))}.

Now it’s been shown that {(−1,0), (1,0))}⊆ ⋂
a∈R

Aa and
⋂
a∈R

Aa ⊆ {(−1,0), (1,0))}, so it

follows that
⋂
a∈R

Aa = {(−1,0), (1,0))}. ■

25. Suppose A,B,C and D are sets. Prove that (A×B)∪ (C×D)⊆ (A∪C)× (B∪D).

Proof. Suppose (a,b) ∈ (A×B)∪ (C×D).
By definition of union, this means (a,b) ∈ (A×B) or (a,b) ∈ (C×D).
We examine these two cases individually.
Case 1. Suppose (a,b) ∈ (A×B). By definition of ×, it follows that a ∈ A and
b ∈ B. From this, it follows from the definition of ∪ that a ∈ A∪C and b ∈ B∪D.
Again from the definition of ×, we get (a,b) ∈ (A∪C)× (B∪D).
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Case 2. Suppose (a,b) ∈ (C×D). By definition of ×, it follows that a ∈ C and
b ∈ D. From this, it follows from the definition of ∪ that a ∈ A∪C and b ∈ B∪D.
Again from the definition of ×, we get (a,b) ∈ (A∪C)× (B∪D).
In either case, we obtained (a,b) ∈ (A∪C)× (B∪D),
so we’ve proved that (a,b) ∈ (A×B)∪ (C×D) implies (a,b) ∈ (A∪C)× (B∪D).
Therefore (A×B)∪ (C×D)⊆ (A∪C)× (B∪D). ■

27. Prove {12a+4b : a,b ∈Z}= {4c : c ∈Z}.

Proof. First we show {12a+4b : a,b ∈Z}⊆ {4c : c ∈Z}. Suppose x ∈ {12a+4b : a,b ∈Z}.
Then x = 12a+4b for some integers a and b. From this we get x = 4(3a+b), so
x = 4c where c is the integer 3a+b. Consequently x ∈ {4c : c ∈Z}. This establishes
that {12a+4b : a,b ∈Z}⊆ {4c : c ∈Z}.
Next we show {4c : c ∈Z}⊆ {12a+4b : a,b ∈Z}. Suppose x ∈ {4c : c ∈Z}. Then x = 4c
for some c ∈ Z. Thus x = (12+4(−2))c = 12c+4(−2c), and since c and −2c are
integers we have x ∈ {12a+4b : a,b ∈Z}.
This proves that {12a+4b : a,b ∈Z}= {4c : c ∈Z}. ■

29. Suppose A 6= ;. Prove that A×B ⊆ A×C, if and only if B ⊆ C.

Proof. First we will prove that if A×B ⊆ A×C, then B ⊆ C. Using contrapositive,
suppose that B 6⊆ C. This means there is an element b ∈ B with b ∉ C. Since
A 6= ;, there exists an element a ∈ A. Now consider the ordered pair (a,b). Note
that (a,b) ∈ A×B, but (a,b) 6∈ A×C. This means A×B 6⊆ A×C.

Conversely, we will now show that if B ⊆ C, then A×B ⊆ A×C. We use direct
proof. Suppose B ⊆ C. Assume that (a,b) ∈ A×B. This means a ∈ A and b ∈ B.
But, as B ⊆ C, we also have b ∈ C. From a ∈ A and b ∈ C, we get (a,b) ∈ A×C.
We’ve now shown (a,b) ∈ A×B implies (a,b) ∈ A×C, so A×B ⊆ A×C. ■

31. Suppose B 6= ; and A×B ⊆ B×C. Prove A ⊆ C.

Proof. Suppose B 6= ; and A×B ⊆ B×C. In what follows, we show that A ⊆ C.
Let x ∈ A. Because B is not empty, it contains some element b. Observe that
(x,b) ∈ A×B. But as A×B ⊆ B×C, we also have (x,b) ∈ B×C, so, in particular,
x ∈ B. As x ∈ A and x ∈ B, we have (x, x) ∈ A×B. But as A×B ⊆ B×C, it follows
that (x, x) ∈ B×C. This implies x ∈ C.

Now we’ve shown x ∈ A implies x ∈ C, so A ⊆ C. ■

Chapter 9 Exercises
1. If x, y ∈R, then |x+ y| = |x|+ |y|.

This is false.
Disproof: Here is a counterexample: Let x = 1 and y=−1. Then |x+ y| = 0 and
|x|+ |y| = 2, so it’s not true that |x+ y| = |x|+ |y|.
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3. If n ∈Z and n5 −n is even, then n is even.
This is false.
Disproof: Here is a counterexample: Let n = 3. Then n5 −n = 35 −3= 240, but
n is not even.

5. If A, B,C and D are sets, then (A×B)∪ (C×D)= (A∪C)× (B∪D).
This is false.
Disproof: Here is a counterexample: Let A = {1,2}, B = {1,2}, C = {2,3} and
D = {2,3}. Then (A×B)∪(C×D)= {(1,1), (1,2), (2,1), (2,2)}∪{(2,2), (2,3), (3,2), (3,3)}=
{(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3)} . Also (A ∪C)× (B ∪ D) = {1,2,3}× {1,2,3}=
{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}, so you can see that (A ×B)∪
(C×D) 6= (A∪C)× (B∪D).

7. If A, B and C are sets, and A×C = B×C, then A = B.
This is false.
Disproof: Here is a counterexample: Let A = {1}, B = {2} and C = ;. Then
A×C = B×C =;, but A 6= B.

9. If A and B are sets, then P(A)−P(B)⊆P(A−B).
This is false.
Disproof: Here is a counterexample: Let A = {1,2} and B = {1}. Then P(A)−
P(B)= {;, {1} , {2} , {1,2}}− {;, {1}}= {{2} , {1,2}}. Also P(A−B)= P({2})= {;, {2}}. In
this example we have P(A)−P(B) 6⊆P(A−B).

11. If a,b ∈N, then a+b < ab.
This is false.
Disproof: Here is a counterexample: Let a = 1 and b = 1. Then a+ b = 2 and
ab = 1, so it’s not true that a+b < ab.

13. There exists a set X for which R⊆ X and ;∈ X . This is true.

Proof. Simply let X = R∪ {;}. If x ∈ R, then x ∈ R∪ {;} = X , so R⊆ X . Likewise,
;∈R∪ {;}= X because ;∈ {;}. ■

15. Every odd integer is the sum of three odd integers. This is true.

Proof. Suppose n is odd. Then n = n+1+ (−1), and therefore n is the sum of
three odd integers. ■

17. For all sets A and B, if A−B =;, then B 6= ;.
This is false.
Disproof: Here is a counterexample: Just let A =; and B =;. Then A−B =;,
but it’s not true that B 6= ;.

19. For every r, s ∈Q with r < s, there is an irrational number u for which r < u < s.
This is true.

Proof. (Direct) Suppose r, s ∈Q with r < s. Consider the number u = r+p
2 s−r

2 .
In what follows we will show that u is irrational and r < u < s. Certainly since
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s− r is positive, it follows that r < r+p
2 s−r

2 = u. Also, since
p

2< 2 we have

u = r+
p

2
s− r

2
< r+2

s− r
2

= s,

and therefore u < s. Thus we can conclude r < u < s.

Now we just need to show that u is irrational. Suppose for the sake of contra-
diction that u is rational. Then u = a

b for some integers a and b. Since r and s
are rational, we have r = c

d and s = e
f for some c,d, e, f ∈Z. Now we have

u = r+
p

2
s− r

2
a
b

= c
d
+
p

2
e
f − c

d

2
ad−bc

bd
=

p
2

ed− c f
2d f

(ad−bc)2d f
bd(ed− c f )

=
p

2

This expresses
p

2 as a quotient of two integers, so
p

2 is rational, a contradiction.
Thus u is irrational.

In summary, we have produced an irrational number u with r < u < s, so the
proof is complete. ■

21. There exist two prime numbers p and q for which p− q = 97.
This statement is false.
Disproof: Suppose for the sake of contradiction that this is true. Let p and
q be prime numbers for which p− q = 97. Now, since their difference is odd, p
and q must have opposite parity, so one of p and q is even and the other is
odd. But there exists only one even prime number (namely 2), so either p = 2
or q = 2. If p = 2, then p− q = 97 implies q = 2−97 = −95, which is not prime.
On the other hand if q = 2, then p− q = 97 implies p = 99, but that’s not prime
either. Thus one of p or q is not prime, a contradiction.

23. If x, y ∈R and x3 < y3, then x < y. This is true.

Proof. (Contrapositive) Suppose x ≥ y. We need to show x3 ≥ y3.
Case 1. Suppose x and y have opposite signs, that is one of x and y is positive
and the other is negative. Then since x ≥ y, x is positive and y is negative.
Then, since the powers are odd, x3 is positive and y3 is negative, so x3 ≥ y3.
Case 2. Suppose x and y do not have opposite signs. Then x2 + xy+ y2 ≥ 0 and
also x− y≥ 0 because x ≥ y. Thus we have x3 − y3 = (x− y)(x2 + xy+ y2)≥ 0. From
this we get x3 − y3 ≥ 0, so x3 ≥ y3.
In either case we have x3 ≥ y3. ■
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25. For all a,b, c ∈Z, if a | bc, then a | b or a | c.
This is false.
Disproof: Let a = 6, b = 3 and c = 4. Note that a | bc, but a - b and a - c.

27. The equation x2 = 2x has three real solutions.

Proof. By inspection, the numbers x = 2 and x = 4 are two solutions of this
equation. But there is a third solution. Let m be the real number for which
m2m = 1

2 . Then negative number x =−2m is a solution, as follows.

x2 = (−2m)2 = 4m2 = 4
(

m2m

2m

)2
= 4

( 1
2

2m

)2

= 1
22m = 2−2m = 2x.

Therefore we have three solutions 2, 4 and m. ■

29. If x, y ∈R and |x+ y| = |x− y|, then y= 0.
This is false.
Disproof: Let x = 0 and y= 1. Then |x+ y| = |x− y|, but y= 1.

31. No number appears in Pascal’s triangle more than four times.
Disproof: The number 120 appears six times. Check that

(10
3

)= (10
7

)= (16
2

)=(16
14

)= (120
1

)= (120
119

)= 120.

33. Suppose f (x)= a0 +a1x+a2x2 +·· ·+anxn is a polynomial of degree 1 or greater,
and for which each coefficient ai is in N. Then there is an n ∈N for which the
integer f (n) is not prime.

Proof. (Outline) Note that, because the coefficients are all positive and the
degree is greater than 1, we have f (1)> 1. Let b = f (1)> 1. Now, the polynomial
f (x)− b has a root 1, so f (x)− b = (x− 1)g(x) for some polynomial g. Then
f (x) = (x−1)g(x)+ b. Now note that f (b+1) = bg(b)+ b = b(g(b)+1). If we can
now show that g(b)+ 1 is an integer, then we have a nontrivial factoring
f (b+1) = b(g(b)+1), and f (b+1) is not prime. To complete the proof, use the
fact that f (x)−b = (x−1)g(x) has integer coefficients, and deduce that g(x) must
also have integer coefficients. ■

Chapter 10 Exercises

1. For every integer n ∈N, it follows that 1+2+3+4+·· ·+n = n2 +n
2

.

Proof. We will prove this with mathematical induction.

(1) Observe that if n = 1, this statement is 1= 12 +1
2

, which is obviously true.
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(2) Consider any integer k ≥ 1. We must show that Sk implies Sk+1. In other
words, we must show that if 1+2+3+4+·· ·+k = k2+k

2 is true, then

1+2+3+4+·· ·+k+ (k+1)= (k+1)2 + (k+1)
2

is also true. We use direct proof.
Suppose k ≥ 1 and 1+2+3+4+·· ·+k = k2+k

2 . Observe that

1+2+3+4+·· ·+k+ (k+1) =
(1+2+3+4+·· ·+k)+ (k+1) =

k2 +k
2

+ (k+1) = k2 +k+2(k+1)
2

= k2 +2k+1 + k+1
2

= (k+1)2 + (k+1)
2

.

Therefore we have shown that 1+2+3+4+·· ·+k+ (k+1)= (k+1)2+(k+1)
2 . ■

3. For every integer n ∈N, it follows that 13 +23 +33 +43 +·· ·+n3 = n2(n+1)2
4 .

Proof. We will prove this with mathematical induction.
(1) When n = 1 the statement is 13 = 12(1+1)2

4 = 4
4 = 1, which is true.

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume
13 +23 +33 +43 +·· ·+k3 = k2(k+1)2

4 . Observe that this implies the statement is
true for n = k+1.

13 +23 +33 +43 +·· ·+k3 + (k+1)3 =
(13 +23 +33 +43 +·· ·+k3)+ (k+1)3 =

k2(k+1)2

4
+ (k+1)3 = k2(k+1)2

4
+ 4(k+1)3

4

= k2(k+1)2 +4(k+1)3

4

= (k+1)2(k2 +4(k+1)1)
4

= (k+1)2(k2 +4k+4)
4

= (k+1)2(k+2)2

4

= (k+1)2((k+1)+1)2

4

Therefore 13 +23 +33 +43 +·· ·+ k3 + (k+1)3 = (k+1)2((k+1)+1)2
4 , which means the

statement is true for n = k+1. ■
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5. If n ∈N, then 21 +22 +23 +·· ·+2n = 2n+1 −2.

Proof. The proof is by mathematical induction.
(1) When n = 1, this statement is 21 = 21+1 −2, or 2= 4−2, which is true.
(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume

21+22+23+·· ·+2k = 2k+1−2. Observe this implies that the statement is true
for n = k+1, as follows:

21 +22 +23 +·· ·+2k +2k+1 =
(21 +22 +23 +·· ·+2k)+2k+1 =

2k+1 −2+2k+1 = 2 ·2k+1 −2

= 2k+2 −2

= 2(k+1)+1 −2

Thus we have 21 +22 +23 +·· ·+2k +2k+1 = 2(k+1)+1 −2, so the statement is true
for n = k+1.

Thus the result follows by mathematical induction. ■

7. If n ∈N, then 1 ·3+2 ·4+3 ·5+4 ·6+·· ·+n(n+2)= n(n+1)(2n+7)
6

.

Proof. The proof is by mathematical induction.
(1) When n = 1, we have 1 ·3= 1(1+1)(2+7)

6 , which is the true statement 3= 18
6 .

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume
1 ·3+2 ·4+3 ·5+4 ·6+·· ·+k(k+2)= k(k+1)(2k+7)

6 . Now observe that

1 ·3+2 ·4+3 ·5+4 ·6+·· ·+k(k+2)+ (k+1)((k+1)+2) =
(1 ·3+2 ·4+3 ·5+4 ·6+·· ·+k(k+2))+ (k+1)((k+1)+2) =

k(k+1)(2k+7)
6

+ (k+1)((k+1)+2) =
k(k+1)(2k+7)

6
+ 6(k+1)(k+3)

6
=

k(k+1)(2k+7)+6(k+1)(k+3)
6

=
(k+1)(k(2k+7)+6(k+3))

6
=

(k+1)(2k2 +13k+18)
6

=
(k+1)(k+2)(2k+9)

6
=

(k+1)((k+1)+1)(2(k+1)+7)
6

Thus we have 1·3+2·4+3·5+4·6+·· ·+k(k+2)+(k+1)((k+1)+2)= (k+1)((k+1)+1)(2(k+1)+7)
6 ,

and this means the statement is true for n = k+1.
Thus the result follows by mathematical induction. ■
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9. For any integer n ≥ 0, it follows that 24 | (52n −1).

Proof. The proof is by mathematical induction.
(1) For n = 0, the statement is 24 | (52·0 −1). This is 24 | 0, which is true.
(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume

24 | (52k −1). This means 52k −1 = 24a for some integer a, and from this we
get 52k = 24a+1. Now observe that

52(k+1) −1 =
52k+2 −1 =
5252k −1 =

52(24a+1)−1 =
25(24a+1)−1 =

25 ·24a+25−1 = 24(25a+1).

This shows 52(k+1) −1= 24(25a+1), which means 24 | 52(k+1) −1.
This completes the proof by mathematical induction. ■

11. For any integer n ≥ 0, it follows that 3 | (n3 +5n+6).

Proof. The proof is by mathematical induction.
(1) When n = 0, the statement is 3 | (03 +5 ·0+6), or 3 | 6, which is true.
(2) Now assume the statement is true for some integer n = k ≥ 0, that is assume

3 | (k3 +5k+6). This means k3 +5k+6 = 3a for some integer a. We need to
show that 3 | ((k+1)3 +5(k+1)+6). Observe that

(k+1)3 +5(k+1)+6 = k3 +3k2 +3k+1+5k+5+6

= (k3 +5k+6)+3k2 +3k+6

= 3a+3k2 +3k+6

= 3(a+k2 +k+2).

Thus we have deduced (k+1)3 − (k+1)= 3(a+k2 +k+2). Since a+k2 +k+2 is
an integer, it follows that 3 | ((k+1)3 +5(k+1)+6).

It follows by mathematical induction that 3 | (n3 +5n+6) for every n ≥ 0. ■

13. For any integer n ≥ 0, it follows that 6 | (n3 −n).

Proof. The proof is by mathematical induction.
(1) When n = 0, the statement is 6 | (03 −0), or 6 | 0, which is true.



280 Solutions

(2) Now assume the statement is true for some integer n = k ≥ 0, that is, assume
6 | (k3 −k). This means k3 −k = 6a for some integer a. We need to show that
6 | ((k+1)3 − (k+1)). Observe that

(k+1)3 − (k+1) = k3 +3k2 +3k+1−k−1

= (k3 −k)+3k2 +3k

= 6a+3k2 +3k

= 6a+3k(k+1).

Thus we have deduced (k+1)3 − (k+1)= 6a+3k(k+1). Since one of k or (k+1)
must be even, it follows that k(k+1) is even, so k(k+1)= 2b for some integer
b. Consequently (k+1)3 − (k+1) = 6a+3k(k+1) = 6a+3(2b) = 6(a+ b). Since
(k+1)3 − (k+1)= 6(a+b) it follows that 6 | ((k+1)3 − (k+1)).

Thus the result follows by mathematical induction. ■

15. If n ∈N, then 1
1·2 + 1

2·3 + 1
3·4 + 1

4·5 +·· ·+ 1
n(n+1) = 1− 1

n+1 .

Proof. The proof is by mathematical induction.
(1) When n = 1, the statement is 1

1(1+1) = 1− 1
1+1 , which simplifies to 1

2 = 1
2 .

(2) Now assume the statement is true for some integer n = k ≥ 1, that is assume
1

1·2 + 1
2·3 + 1

3·4 + 1
4·5 +·· ·+ 1

k(k+1) = 1− 1
k+1 . Next we show that the statement for

n = k+1 is true. Observe that
1

1 ·2 + 1
2 ·3 + 1

3 ·4 + 1
4 ·5 +·· ·+ 1

k(k+1)
+ 1

(k+1)((k+1)+1)
=(

1
1 ·2 + 1

2 ·3 + 1
3 ·4 + 1

4 ·5 +·· ·+ 1
k(k+1)

)
+ 1

(k+1)(k+2)
=(

1− 1
k+1

)
+ 1

(k+1)(k+2)
=

1− 1
k+1

+ 1
(k+1)(k+2)

=

1− k+2
(k+1)(k+2)

+ 1
(k+1)(k+2)

=

1− k+1
(k+1)(k+2)

=

1− 1
k+2

=

1− 1
(k+1)+1

.

This establishes 1
1·2 + 1

2·3 + 1
3·4 + 1

4·5 +·· ·+ 1
(k+1)((k+1)+1 = 1− 1

(k+1)+1 , which is to say
that the statement is true for n = k+1.

This completes the proof by mathematical induction. ■
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17. Suppose A1, A2, . . . An are sets in some universal set U, and n ≥ 2. Prove that
A1 ∩ A2 ∩·· ·∩ An = A1 ∪ A2 ∪·· ·∪ An.

Proof. The proof is by strong induction.
(1) When n = 2 the statement is A1 ∩ A2 = A1 ∪ A2. This is not an entirely

obvious statement, so we have to prove it. Observe that

A1 ∩ A2 = {x : (x ∈U)∧ (x ∉ A1 ∩ A2)} (definition of complement)
= {x : (x ∈U)∧∼ (x ∈ A1 ∩ A2)}

= {x : (x ∈U)∧∼ ((x ∈ A1)∧ (x ∈ A2))} (definition of ∩)
= {x : (x ∈U)∧ (∼ (x ∈ A1)∨∼ (x ∈ A2))} (DeMorgan)
= {x : (x ∈U)∧ ((x ∉ A1)∨ (x ∉ A2))}

= {x : (x ∈U)∧ (x ∉ A1)∨ (x ∈U)∧ (x ∉ A2)} (distributive prop.)
= {x : ((x ∈U)∧ (x ∉ A1))}∪ {x : ((x ∈U)∧ (x ∉ A2))} (def. of ∪)
= A1 ∪ A2 (definition of complement)

(2) Let k ≥ 2. Assume the statement is true if it involves k or fewer sets. Then

A1 ∩ A2 ∩·· ·∩ Ak−1 ∩ Ak ∩ Ak+1 =
A1 ∩ A2 ∩·· ·∩ Ak−1 ∩ (Ak ∩ Ak+1) = A1 ∪ A2 ∪·· ·∪ Ak−1 ∪ Ak ∩ Ak+1

= A1 ∪ A2 ∪·· ·∪ Ak−1 ∪ Ak ∪ Ak+1

Thus the statement is true when it involves k+1 sets.
This completes the proof by strong induction. ■

19. Prove ∑n
k=1 1/k2 ≤ 2−1/n for every n.

Proof. This clearly holds for n = 1. Assume it holds for some n ≥ 1. Then∑n+1
k=1 1/k2 ≤ 2−1/n+1/(n+1)2 = 2− (n+1)2−n

n(n+1)2 ≤ 2−1/(n+1). The proof is complete. ■

21. If n ∈N, then 1
1 + 1

2 + 1
3 +·· ·+ 1

2n ≥ 1+ n
2 .

Proof. If n = 1, the result is obvious.
Assume the proposition holds for some n > 1. Then

1
1
+ 1

2
+ 1

3
+·· ·+ 1

2n+1 =
(

1
1
+ 1

2
+ 1

3
+·· ·+ 1

2n

)
+

(
1

2n +1
+ 1

2n +2
+ 1

2n +3
+·· ·+ 1

2n+1

)
≥

(
1+ n

2

)
+

(
1

2n +1
+ 1

2n +2
+ 1

2n +3
+·· ·+ 1

2n+1

)
.

Now, the sum
(

1
2n+1 + 1

2n+2 + 1
2n+3 +·· ·+ 1

2n+1

)
on the right has 2n+1−2n = 2n terms,

all greater than or equal to 1
2n+1 , so the sum is greater than 2n 1

2n+1 = 1
2 . Therefore

we get 1
1 + 1

2 + 1
3 +·· ·+ 1

2n+1 ≥ (
1+ n

2
)+ (

1
2n+1 + 1

2n+2 + 1
2n+3 +·· ·+ 1

2n+1

)
≥ (

1+ n
2
)+ 1

2 =
1+ n+1

2 . This means the result is true for n+1, so the theorem is proved. ■
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23. Use induction to prove the binomial theorem (x+ y)n =∑n
i=0

(n
i
)
xn−i yi.

Proof. Notice that when n = 1, the formula is (x+ y)1 = (1
0
)
x1 y0 + (1

1
)
x0 y1 = x+ y,

which is true.

Now assume the theorem is true for some n > 1. We will show that this implies
that it is true for the power n+1. Just observe that

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)
n∑

i=0

(
n
i

)
xn−i yi

=
n∑

i=0

(
n
i

)
x(n+1)−i yi +

n∑
i=0

(
n
i

)
xn−i yi+1

=
n∑

i=0

[(
n
i

)
+

(
n

i−1

)]
x(n+1)−i yi + yn+1

=
n∑

i=0

(
n+1

i

)
x(n+1)−i yi +

(
n+1
n+1

)
yn+1

=
n+1∑
i=0

(
n+1

i

)
x(n+1)−i yi.

This shows that the formula is true for (x+ y)n+1, so the theorem is proved. ■

25. Concerning the Fibonacci sequence, prove that F1+F2+F3+F4+. . .+Fn = Fn+2−1.

Proof. The proof is by induction.
(1) When n = 1 the statement is F1 = F1+2 −1 = F3 −1 = 2−1 = 1, which is true.

Also when n = 2 the statement is F1+F2 = F2+2−1= F4−1= 3−1= 2, which is
true, as F1 +F2 = 1+1= 2.

(2) Now assume k ≥ 1 and F1 +F2 +F3 +F4 + . . .+Fk = Fk+2 −1. We need to show
F1 +F2 +F3 +F4 + . . .+Fk +Fk+1 = Fk+3 −1. Observe that

F1 +F2 +F3 +F4 + . . .+Fk +Fk+1 =
(F1 +F2 +F3 +F4 + . . .+Fk)+Fk+1 =

Fk+2 −1++Fk+1 = (Fk+1 +Fk+2)−1

= Fk+3 −1.

This completes the proof by induction. ■

27. Concerning the Fibonacci sequence, prove that F1 +F3 +·· ·+F2n−1 = F2n.

Proof. If n = 1, the result is immediate. Assume for some n > 1 we have∑n
i=1 F2i−1 = F2n. Then ∑n+1

i=1 F2i−1 = F2n+1+∑n
i=1 F2i−1 = F2n+1+F2n = F2n+2 = F2(n+1)

as desired. ■
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29. Prove that
(n
0
)+ (n−1

1
)+ (n−2

2
)+ (n−3

3
)+·· ·+ ( 1

n−1
)+ (0

n
)= Fn+1.

Proof. (Strong Induction) For n = 1 this is
(1
0
)+ (0

1
)= 1+0 = 1 = F2 = F1+1. Thus

the assertion is true when n = 1.
Now fix n and assume that

(k
0
)+(k−1

1
)+(k−2

2
)+(k−3

3
)+·· ·+ ( 1

k−1
)+(0

k
)= Fk+1 whenever

k < n. In what follows we use the identity
(n

k
)= (n−1

k−1
)+ (n−1

k
)
. We also often use(a

b
)= 0 whenever it is untrue that 0≤ b ≤ a.(

n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+·· ·+

(
1

n−1

)
+

(
0
n

)

=
(
n
0

)
+

(
n−1

1

)
+

(
n−2

2

)
+·· ·+

(
1

n−1

)

=
(
n−1
−1

)
+

(
n−1

0

)
+

(
n−2

0

)
+

(
n−2

1

)
+

(
n−3

1

)
+

(
n−3

2

)
+·· ·+

(
0

n−1

)
+

(
0
n

)

=
(
n−1

0

)
+

(
n−2

0

)
+

(
n−2

1

)
+

(
n−3

1

)
+

(
n−3

2

)
+·· ·+

(
0

n−1

)
+

(
0
n

)

=
[(

n−1
0

)
+

(
n−2

1

)
+·· ·+

(
0

n−1

)]
+

[(
n−2

0

)
+

(
n−3

1

)
+·· ·+

(
0

n−2

)]
= Fn +Fn−1 = Fn

This completes the proof. ■

31. Prove that ∑n
k=0

(k
r
)= (n+1

r+1
)
, where r ∈N.

Hint: Use induction on the integer n. After doing the basis step, break up the
expression

(k
r
)
as

(k
r
)= (k−1

r−1
)+ (k−1

r
)
. Then regroup, use the induction hypothesis,

and recombine using the above identity.
33. Suppose that n infinitely long straight lines lie on the plane in such a way that

no two are parallel, and no three intersect at a single point. Show that this
arrangement divides the plane into n2+n+2

2 regions.

Proof. The proof is by induction. For the basis step, suppose n = 1. Then there
is one line, and it clearly divides the plane into 2 regions, one on either side of
the line. As 2= 12+1+2

2 = n2+n+2
2 , the formula is correct when n = 1.

Now suppose there are n+1 lines on the plane, and that the formula is correct
for when there are n lines on the plane. Single out one of the n+1 lines on the
plane, and call it `. Remove line `, so that there are now n lines on the plane.
By the induction hypothesis, these n lines
divide the plane into n2+n+2

2 regions. Now add
line ` back. Doing this adds an additional
n+1 regions. (The diagram illustrates the
case where n+1 = 5. Without `, there are
n = 4 lines. Adding ` back produces n+1= 5
new regions.)

`

1

2
3
4

5
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Thus, with n+1 lines there are all together (n+1)+ n2+n+2
2 regions. Observe

(n+1)+ n2 +n+2
2

= 2n+2+n2 +n+2
2

= (n+1)2 + (n+1)+2
2

.

Thus, with n+1 lines, we have (n+1)2+(n+1)+2
2 regions, which means that the

formula is true for when there are n+1 lines. We have shown that if the
formula is true for n lines, it is also true for n+1 lines. This completes the
proof by induction. ■

35. If n,k ∈N, and n is even and k is odd, then
(n

k
)
is even.

Proof. Notice that if k is not a value between 0 and n, then
(n

k
)= 0 is even; thus

from here on we can assume that 0< k < n. We will use strong induction.

For the basis case, notice that the assertion is true for the even values n = 2
and n = 4:

(2
1
)= 2;

(4
1
)= 4;

(4
3
)= 4 (even in each case).

Now fix and even n assume that
(m

k
)
is even whenever m is even, k is odd, and

m < n. Using the identity
(n

k
)= (n−1

k−1
)+ (n−1

k
)
three times, we get

(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)

=
(
n−2
k−2

)
+

(
n−2
k−1

)
+

(
n−2
k−1

)
+

(
n−2

k

)

=
(
n−2
k−2

)
+2

(
n−2
k−1

)
+

(
n−2

k

)
.

Now, n−2 is even, and k and k−2 are odd. By the inductive hypothesis, the
outer terms of the above expression are even, and the middle is clearly even;
thus we have expressed

(n
k
)
as the sum of three even integers, so it is even. ■

Chapter 11 Exercises
Section 11.0 Exercises

1. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses > on A. Then
illustrate it with a diagram.

R = {
(5,4), (5,3), (5,3), (5,3), (5,1), (5,0), (4,3), (4,2), (4,1),

(4,0), (3,2), (3,1), (3,0), (2,1), (2,0), (1,0)
}

0

12

3

4 5

3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses ≥ on A. Then
illustrate it with a diagram.
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R = {
(5,5), (5,4), (5,3), (5,2), (5,1), (5,0),

(4,4), (4,3), (4,2), (4,1), (4,0),
(3,3), (3,2), (3,1), (3,0),
(2,2), (2,1), (2,0), (1,1), (1,0), (0,0)

} 0

12

3

4 5

5. The following diagram represents a relation R on a set A. Write the sets A
and R. Answer: A = {0,1,2,3,4,5}; R = {(3,3), (4,3), (4,2), (1,2), (2,5), (5,0)}

7. Write the relation < on the set A =Z as a subset R of Z×Z. This is an infinite
set, so you will have to use set-builder notation.
Answer: R = {(x, y) ∈Z×Z : y− x ∈N}

9. How many different relations are there on the set A = {
1,2,3,4,5,6

}
?

Consider forming a relation R ⊆ A× A on A. For each ordered pair (x, y) ∈ A× A,
we have two choices: we can either include (x, y) in R or not include it. There
are 6 ·6= 36 ordered pairs in A× A. By the multiplication principle, there are
thus 236 different subsets R and hence also this many relations on A.

11. Answer: 2(|A|2) 13. Answer: 6= 15. Answer: ≡ (mod 3)

Section 11.1 Exercises

1. Consider the relation R = {(a,a), (b,b), (c, c), (d,d), (a,b), (b,a)} on the set A = {a,b, c,d}.
Which of the properties reflexive, symmetric and transitive does R possess and
why? If a property does not hold, say why.
This is reflexive because (x, x) ∈ R (i.e., xRx )for every x ∈ A.
It is symmetric because it is impossible to find an (x, y) ∈ R for which (y, x) ∉ R.
It is transitive because (xR y∧ yRz)⇒ xRz always holds.

3. Consider the relation R = {(a,b), (a, c), (c,b), (b, c)} on the set A = {a,b, c}. Which
of the properties reflexive, symmetric and transitive does R possess and why?
If a property does not hold, say why.
This is not reflexive because (a,a) ∉ R (for example).
It is not symmetric because (a,b) ∈ R but (b,a) ∉ R.
It is not transitive because cRb and bRc are true, but cRc is false.

5. Consider the relation R = {
(0,0), (

p
2,0), (0,

p
2), (

p
2,
p

2)
}
on R. Say whether this

relation is reflexive, symmetric and transitive. If a property does not hold, say
why.
This is not reflexive because (1,1) ∉ R (for example).
It is symmetric because it is impossible to find an (x, y) ∈ R for which (y, x) ∉ R.
It is transitive because (xR y∧ yRz)⇒ xRz always holds.

7. There are 16 possible different relations R on the set A = {a,b}. Describe all of
them. (A picture for each one will suffice, but don’t forget to label the nodes.)
Which ones are reflexive? Symmetric? Transitive?
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a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Only the four in the right column are reflexive. Only the eight in the first and
fourth rows are symmetric. All of them are transitive except the first three
on the fourth row.

9. Define a relation on Z by declaring xR y if and only if x and y have the same
parity. Say whether this relation is reflexive, symmetric and transitive. If a
property does not hold, say why. What familiar relation is this?
This is reflexive because xRx since x always has the same parity as x.
It is symmetric because if x and y have the same parity, then y and x must
have the same parity (that is, xR y⇒ yRx).
It is transitive because if x and y have the same parity and y and z have the
same parity, then x and z must have the same parity. (That is (xR y∧yRz)⇒ xRz
always holds.)
The relation is congruence modulo 2.

11. Suppose A = {a,b, c,d} and R = {(a,a), (b,b), (c, c), (d,d)}. Say whether this relation
is reflexive, symmetric and transitive. If a property does not hold, say why.
This is reflexive because (x, x) ∈ R for every x ∈ A.
It is symmetric because it is impossible to find an (x, y) ∈ R for which (y, x) ∉ R.
It is transitive because (xR y∧ yRz)⇒ xRz always holds.
(For example (aRa∧aRa)⇒ aRa is true, etc.)

13. Consider the relation R = {(x, y) ∈R×R : x− y ∈Z} on R. Prove that this relation
is reflexive and symmetric, and transitive.

Proof. In this relation, xR y means x− y ∈Z.
To see that R is reflexive, take any x ∈R and observe that x− x = 0 ∈Z, so xRx.
Therefore R is reflexive.
To see that R is symmetric, we need to prove xR y ⇒ yRx for all x, y ∈ R. We
use direct proof. Suppose xR y. This means x− y ∈ Z. Then it follows that
−(x− y)= y− x is also in Z. But y− x ∈Z means yRx. We’ve shown xR y implies
yRx, so R is symmetric.
To see that R is transitive, we need to prove (xR y∧ yRz) ⇒ xRz is always
true. We prove this conditional statement with direct proof. Suppose xR y and
yRz. Since xR y, we know x− y ∈ Z. Since yRz, we know y− z ∈ Z. Thus x− y
and y− z are both integers; by adding these integers we get another integer
(x− y)+ (y− z)= x− z. Thus x− z ∈Z, and this means xRz. We’ve now shown that
if xR y and yRz, then xRz. Therefore R is transitive. ■
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15. Prove or disprove: If a relation is symmetric and transitive, then it is also
reflexive.
This is false. For a counterexample, consider the relation R = {(a,a), (a,b), (b,a), (b,b)}
on the set A = {a,b, c}. This is symmetric and transitive but it is not reflexive.

17. Define a relation ∼ on Z as x ∼ y if and only if |x− y| ≤ 1. Say whether ∼ is
reflexive, symmetric and transitive.
This is reflexive because |x−x| = 0≤ 1 for all integers x. It is symmetric because
x ∼ y if and only if |x− y| ≤ 1, if and only if |y−x| ≤ 1, if and only if y∼ x. It is not
transitive because, for example, 0∼ 1 and 1∼ 2, but is not the case that 0∼ 2.

Section 11.2 Exercises

1. Let A = {1,2,3,4,5,6}, and consider the following equivalence relation on A: R =
{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,3), (3,2), (4,5), (5,4), (4,6), (6,4), (5,6), (6,5)}. List
the equivalence classes of R.

The equivalence classes are: [1]= {1}; [2]= [3]= {2,3}; [4]= [5]= [6]= {4,5,6}.
3. Let A = {a,b, c,d, e}. Suppose R is an equivalence relation on A. Suppose R has

three equivalence classes. Also aRd and bRc. Write out R as a set.
Answer: R = {(a,a), (b,b), (c, c), (d,d), (e, e), (a,d), (d,a), (b, c), (c,b)}.

5. There are two different equivalence relations on the set A = {a,b}. Describe
them all. Diagrams will suffice.
Answer: R = {(a,a), (b,b)} and R = {(a,a), (b,b), (a,b), (b,a)}

7. Define a relation R on Z as xR y if and only if 3x−5y is even. Prove R is an
equivalence relation. Describe its equivalence classes.

To prove that R is an equivalence relation, we must show it’s reflexive, sym-
metric and transitive.
The relation R is reflexive for the following reason. If x ∈Z, then 3x−5x =−2x
is even. But then since 3x−5x is even, we have xRx. Thus R is reflexive.

To see that R is symmetric, suppose xR y. We must show yRx. Since xR y, we
know 3x−5y is even, so 3x−5y= 2a for some integer a. Now reason as follows:

3x−5y = 2a

3x−5y+8y−8x = 2a+8y−8x

3y−5x = 2(a+4y−4x).

From this it follows that 3y−5x is even, so yRx. We’ve now shown xR y implies
yRx, so R is symmetric.

To prove that R is transitive, assume that xR y and yRz. (We will show that this
implies xRz.) Since xR y and yRz, it follows that 3x−5y and 3y−5z are both even,
so 3x−5y= 2a and 3y−5z = 2b for some integers a and b. Adding these equations,
we get (3x−5y)+ (3y−5z) = 2a+2b, and this simplifies to 3x−5z = 2(a+ b+ y).
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Therefore 3x−5z is even, so xRz. We’ve now shown that if xR y and yRz, then
xRz, so R is transitive.

We’ve now shown that R is reflexive, symmetric and transitive, so it is an
equivalence relation.

The completes the first part of the problem. Now we move on the second part.
To find the equivalence classes, first note that

[0]= {x ∈Z : xR0}= {x ∈Z : 3x−5 ·0 is even}= {x ∈Z : 3x is even}= {x ∈Z : x is even} .

Thus the equivalence class [0] consists of all even integers. Next, note that

[1]= {x ∈Z : xR1}= {x ∈Z : 3x−5 ·1 is even}= {x ∈Z : 3x−5 is even}= {
x ∈Z : x is odd

}
.

Thus the equivalence class [1] consists of all odd integers.

Consequently there are just two equivalence classes {. . . ,−4,−2,0,2,4, . . .} and
{. . . ,−3,−1,1,3,5, . . .}.

9. Define a relation R on Z as xR y if and only if 4 | (x+ 3y). Prove R is an
equivalence relation. Describe its equivalence classes.
This is reflexive, because for any x ∈Z we have 4 | (x+3x), so xRx.
To prove that R is symmetric, suppose xR y. Then 4 | (x+3y), so x+3y = 4a
for some integer a. Multiplying by 3, we get 3x+9y = 12a, which becomes
y+3x = 12a−8y. Then y+3x = 4(3a−2y), so 4 | (y+3x), hence yRx. Thus we’ve
shown xR y implies yRx, so R is symmetric.
To prove transitivity, suppose xR y and yRz. Then 4|(x+3y) and 4|(y+3z), so
x+3y= 4a and y+3z = 4b for some integers a and b. Adding these two equations
produces x+4y+3z = 4a+4b, or x+3z = 4a+4b−4y= 4(a+b− y). Consequently
4|(x+3z), so xRz, and R is transitive.
As R is reflexive, symmetric and transitive, it is an equivalence relation.
Now let’s compute its equivalence classes.
[0]= {x ∈Z : xR0}= {x ∈Z : 4 | (x+3 ·0)}= {x ∈Z : 4 | x}= {. . .−4,0,4,8,12,16 . . .}
[1]= {x ∈Z : xR1}= {x ∈Z : 4 | (x+3 ·1)}= {x ∈Z : 4 | (x+3)}= {. . .−3,1,5,9,13,17 . . .}
[2]= {x ∈Z : xR2}= {x ∈Z : 4 | (x+3 ·2)}= {x ∈Z : 4 | (x+6)}= {. . .−2,2,6,10,14,18 . . .}
[3]= {x ∈Z : xR3}= {x ∈Z : 4 | (x+3 ·3)}= {x ∈Z : 4 | (x+9)}= {. . .−1,3,7,11,15,19 . . .}

11. Prove or disprove: If R is an equivalence relation on an infinite set A, then R
has infinitely many equivalence classes.
This is False. Counterexample: consider the relation of congruence modulo 2.
It is a relation on the infinite set Z, but it has only two equivalence classes.

13. Answer: m|A| 15. Answer: 15
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Section 11.3 Exercises

1. List all the partitions of the set A = {a,b}. Compare your answer to the answer
to Exercise 5 of Section 11.2.
There are just two partitions {{a} , {b}} and {{a,b}}. These correspond to the two
equivalence relations R1 = {(a,a), (b,b)} and R2 = {(a,a), (a,b), (b,a), (b,b)}, respec-
tively, on A.

3. Describe the partition of Z resulting from the equivalence relation ≡ (mod 4).
Answer: The partition is {[0], [1], [2], [3]} ={

{. . . ,−4,0,4,8,12, . . .} , {. . . ,−3,1,5,9,13, . . .} , {. . . ,−2,2,4,6,10,14, . . .} , {. . . ,−1,3,7,11,15, . . .}
}

5. Answer: Congruence modulo 2, or “same parity.”

Section 11.4 Exercises

1. Write the addition and multiplication tables for Z2.

+ [0] [1]

[0] [0] [1]

[1] [1] [0]

· [0] [1]

[0] [0] [0]

[1] [0] [1]

3. Write the addition and multiplication tables for Z4.

+ [0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

· [0] [1] [2] [3]

[0] [0] [0] [0] [0]

[1] [0] [1] [2] [3]

[2] [0] [2] [0] [2]

[3] [0] [3] [2] [1]

5. Suppose [a], [b] ∈Z5 and [a] · [b]= [0]. Is it necessarily true that either [a]= [0]
or [b]= [0]?

The multiplication table for Z5 is shown in Section 11.4. In the body of that
table, the only place that [0] occurs is in the first row or the first column. That
row and column are both headed by [0]. It follows that if [a] · [b] = [0], then
either [a] or [b] must be [0].

7. Do the following calculations in Z9, in each case expressing your answer as [a]
with 0≤ a ≤ 8.
(a) [8]+ [8]= [7] (b) [24]+ [11]= [8] (c) [21] · [15]= [0] (d) [8] · [8]= [1]
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Chapter 12 Exercises

Section 12.1 Exercises

1. Suppose A = {0,1,2,3,4}, B = {2,3,4,5} and f = {(0,3), (1,3), (2,4), (3,2), (4,2)}. State
the domain and range of f . Find f (2) and f (1).
Domain is A; Range is {2,3,4}; f (2)= 4; f (1)= 3.

3. There are four different functions f : {a,b}→ {0,1}. List them all. Diagrams will
suffice.
f1 = {(a,0), (b,0)} f2 = {(a,1), (b,0)} , f3 = {(a,0), (b,1)} f4 = {(a,1), (b,1)}

5. Give an example of a relation from {a,b, c,d} to {d, e} that is not a function.
One example is {(a,d), (a, e), (b,d), (c,d), (d,d)}.

7. Consider the set f = {(x, y) ∈Z×Z : 3x+ y= 4}. Is this a function from Z to Z?
Explain.
Yes, since 3x+ y= 4 if and only if y= 4−3x, this is the function f :Z→Z defined
as f (x)= 4−3x.

9. Consider the set f = {
(x2, x) : x ∈R}

. Is this a function from R to R? Explain.
No. This is not a function. Observe that f contains the ordered pairs (4,2) and
(4,−2). Thus the real number 4 occurs as the first coordinate of more than one
element of f .

11. Is the set θ = {(X , |X |) : X ⊆Z5} a function? If so, what is its domain and range?
Yes, this is a function. The domain is P(Z5). The range is {0,1,2,3,4,5}.

Section 12.2 Exercises

1. Let A = {1,2,3,4} and B = {a,b, c}. Give an example of a function f : A → B that
is neither injective nor surjective.
Consider f = {(1,a), (2,a), (3,a), (4,a)}.
Then f is not injective because f (1)= f (2).
Also f is not surjective because it sends no element of A to the element c ∈ B.

3. Consider the cosine function cos :R→R. Decide whether this function is injective
and whether it is surjective. What if it had been defined as cos :R→ [−1,1]?
The function cos :R→R is not injective because, for example, cos(0)= cos(2π). It
is not surjective because if b = 5 ∈R (for example), there is no real number for
which cos(x)= b. The function cos :R→ [−1,1] is surjective. but not injective.

5. A function f :Z→Z is defined as f (n)= 2n+1. Verify whether this function is
injective and whether it is surjective.
This function is injective. To see this, suppose m,n ∈Z and f (m)= f (n).
This means 2m+1= 2n+1, from which we get 2m = 2n, and then m = n.
Thus f is injective.
This function is not surjective. To see this notice that f (n) is odd for all
n ∈ Z. So given the (even) number 2 in the codomain Z, there is no n with
f (n)= 2.
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7. A function f : Z×Z→ Z is defined as f ((m,n)) = 2n−4m. Verify whether this
function is injective and whether it is surjective.
This is not injective because (0,2) 6= (−1,0), yet f ((0,2))= f ((−1,0))= 4. This is
not surjective because f ((m,n)) = 2n−4m = 2(n−2m) is always even. If b ∈Z
is odd, then f ((m,n)) 6= b, for all (m,n) ∈Z×Z.

9. Prove that the function f :R− {2}→R− {5} defined by f (x)= 5x+1
x−2 is bijective.

Proof. First, let’s check that f is injective. Suppose f (x)= f (y). Then

5x+1
x−2

= 5y+1
y−2

(5x+1)(y−2) = (5y+1)(x−2)

5xy−10x+ y−2 = 5yx−10y+ x−2

−10x+ y = −10y+ x

11y = 11x

y = x.

Since f (x)= f (y) implies x = y, it follows that f is injective.
Next, let’s check that f is surjective. For this, take an arbitrary element
b ∈R− {5}. We want to see if there is an x ∈R− {2} for which f (x)= b, or 5x+1

x−2 = b.
Solving this for x, we get:

5x+1 = b(x−2)

5x+1 = bx−2b

5x− xb = −2b−1

x(5−b) = −2b−1.

Since we have assumed b ∈ R− {5}, the term (5− b) is not zero, and we can
divide with impunity to get x = −2b−1

5−b
. This is an x for which f (x)= b, so f is

surjective.
Since f is both injective and surjective, it is bijective. ■

11. Consider the function θ : {0,1}×N→Z defined as θ(a,b)= (−1)ab. Is θ injective?
Is it surjective? Explain.
First we show that θ is injective. Suppose θ(a,b)= θ(c,d). Then (−1)ab = (−1)cd.
As b and d are both in N, they are both positive. Then because (−1)ab = (−1)cd,
it follows that (−1)a and (−1)c have the same sign. Since each of (−1)a and (−1)c

equals ±1, we have (−1)a = (−1)c, so then (−1)ab = (−1)cd implies b = d. But also
(−1)a = (−1)c means a and c have the same parity, and because a, c ∈ {0,1}, it
follows a = c. Thus (a,b)= (c,d), so θ is injective.
Next note that θ is not surjective because θ(a,b)= (−1)ab is either positive or
negative, but never zero. Therefore there exist no element (a,b) ∈ {0,1}×N for
which θ(a,b)= 0 ∈Z.
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13. Consider the function f :R2 →R2 defined by the formula f (x, y)= (xy, x3). Is f
injective? Is it surjective?
Notice that f (0,1)= (0,0) and f (0,0)= (0,0), so f is not injective. To show that f
is also not surjective, we will show that it’s impossible to find an ordered pair
(x, y) with f (x, y) = (1,0). If there were such a pair, then f (x, y) = (xy, x3) = (1,0),
which yields xy= 1 and x3 = 0. From x3 = 0 we get x = 0, so xy= 0, a contradiction.

15. This question concerns functions f : {A,B,C,D,E,F,G} → {1,2,3,4,5,6,7}. How
many such functions are there? How many of these functions are injective?
How many are surjective? How many are bijective?
Function f can described as a list ( f (A), f (B), f (C), f (D), f (E), f (F), f (G)), where
there are seven choices for each entry. By the multiplication principle, the total
number of functions f is 77 = 823543.
If f is injective, then this list can’t have any repetition, so there are 7!= 5040
injective functions. Since any injective function sends the seven elements of the
domain to seven distinct elements of the codomain, all of the injective functions
are surjective, and vice versa. Thus there are 5040 surjective functions and
5040 bijective functions.

17. This question concerns functions f : {A,B,C,D,E,F,G}→ {1,2}. How many such
functions are there? How many of these functions are injective? How many
are surjective? How many are bijective?
Function f can described as a list ( f (A), f (B), f (C), f (D), f (E), f (F), f (G)), where
there are two choices for each entry. Therefore the total number of functions
is 27 = 128. It is impossible for any function to send all seven elements of
{A,B,C,D,E,F,G} to seven distinct elements of {1,2}, so none of these 128
functions is injective, hence none are bijective.
How many are surjective? Only two of the 128 functions are not surjective, and
they are the “constant” functions {(A,1), (B,1), (C,1), (D,1), (E,1), (F,1), (G,1)} and
{(A,2), (B,2), (C,2), (D,2), (E,2), (F,2), (G,2)}. So there are 126 surjective functions.

Section 12.3 Exercises

1. If 6 integers are chosen at random, at least two will have the same remainder
when divided by 5.

Proof. Write Z as follows: Z=⋃4
j=0{5k+ j : k ∈Z}. This is a partition of Z into 5

sets. If six integers are picked at random, by the pigeonhole principle, at least
two will be in the same set. However, each set corresponds to the remainder
of a number after being divided by 5 (for example, {5k+1 : k ∈Z} are all those
integers that leave a remainder of 1 after being divided by 5). ■

3. Given any six positive integers, there are two for which their sum or difference
is divisible by 9.

Proof. If for two of the integers n,m we had n ≡ m (mod 9), then n−m ≡ 0 (mod 9),
and we would be done. Thus assume this is not the case. Observe that the
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only two element subsets of positive integers that sum to 9 are {1,8}, {2,7}, {3,6},
and {4,5}. However, since at least five of the six integers must have distinct
remainders from 1, 2, ..., 8 it follows from the pigeonhole principle that two
integers n,m are in the same set. Hence n+m ≡ 0 (mod 9) as desired. ■

5. Prove that any set of 7 distinct natural numbers contains a pair of numbers
whose sum or difference is divisible by 10.

Proof. Let S = {a1,a2,a3,a4,a5,a6,a7} be any set of 7 natural numbers. Let’s say
that a1 < a2 < a3 < ·· · < a7. Consider the set

A = {a1 −a2, a1 −a3, a1 −a4, a1 −a5, a1 −a6, a1 −a7,
a1 +a2, a1 +a3, a1 +a4, a1 +a5, a1 +a6, a1 +a7}

Thus |A| = 12. Now let B = {0,1,2,3,4,5,6,7,8,9}, so |B| = 10. Let f : A → B be the
function for which f (n) equals the last digit of n. (That is f (97)= 7, f (12)= 2,
f (230)= 0, etc.) Then, since |A| > |B|, the pigeonhole principle guarantees that
f is not injective. Thus A contains elements a1 ± ai and a1 ± a j for which
f (a1±ai)= f (a1±a j). This means the last digit of a1±ai is the same as the last
digit of a1±a j. Thus the last digit of the difference (a1±ai)− (a1±a j)= ±ai ±a j
is 0. Hence ±ai ±a j is a sum or difference of elements of S that is divisible by
10. ■

Section 12.4 Exercises
1. Suppose A = {5,6,8}, B = {0,1}, C = {1,2,3}. Let f : A → B be the function f =

{(5,1), (6,0), (8,1)}, and g : B → C be g = {(0,1), (1,1)}. Find g ◦ f .
g ◦ f = {(5,1), (6,1), (8,1)}

3. Suppose A = {1,2,3}. Let f : A → A be the function f = {(1,2), (2,2), (3,1)}, and let
g : A → A be the function g = {(1,3), (2,1), (3,2)}. Find g ◦ f and f ◦ g.
g ◦ f = {(1,1), (2,1), (3,3)}; f ◦ g = {(1,1), (2,2), (3,2)}.

5. Consider the functions f , g : R→ R defined as f (x) = 3px+1 and g(x) = x3. Find
the formulas for g ◦ f and f ◦ g.
g ◦ f (x)= x+1; f ◦ g (x)= 3px3 +1

7. Consider the functions f , g : Z×Z → Z×Z defined as f (m,n) = (mn,m2) and
g(m,n)= (m+1,m+n). Find the formulas for g ◦ f and f ◦ g.
Note g ◦ f (m,n)= g( f (m,n))= g(mn,m2)= (mn+1,mn+m2).
Thus g ◦ f (m,n)= (mn+1,mn+m2).
Note f ◦ g (m,n)= f (g(m,n))= f (m+1,m+n)= ((m+1)(m+n), (m+1)2).
Thus f ◦ g (m,n)= (m2 +mn+m+n,m2 +2m+1).

9. Consider the functions f :Z×Z→Z defined as f (m,n)= m+n and g :Z→Z×Z
defined as g(m)= (m,m). Find the formulas for g ◦ f and f ◦ g.
g ◦ f (m,n)= (m+n,m+n)
f ◦ g(m)= 2m
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Section 12.5 Exercises
1. Check that the function f : Z→ Z defined by f (n) = 6− n is bijective. Then

compute f −1.
It is injective as follows. Suppose f (m)= f (n). Then 6−m = 6−n, which reduces
to m = n.
It is surjective as follows. If b ∈Z, then f (6−b)= 6− (6−b)= b.
Inverse: f −1(n)= 6−n.

3. Let B = {2n : n ∈Z}= {
. . . , 1

4 , 1
2 ,1,2,4,8, . . .

}
. Show that the function f :Z→ B defined

as f (n)= 2n is bijective. Then find f −1.
It is injective as follows. Suppose f (m) = f (n), which means 2m = 2n. Taking
log2 of both sides gives log2(2m)= log2(2n), which simplifies to m = n.
The function f is surjective as follows. Suppose b ∈ B. By definition of B this
means b = 2n for some n ∈Z. Then f (n)= 2n = b.
Inverse: f −1(n)= log2(n).

5. The function f :R→R defined as f (x)=πx− e is bijective. Find its inverse.
Inverse: f −1(x)= x+ e

π
.

7. Show that the function f :R2 →R2 defined by the formula f ((x, y)= ((x2 +1)y, x3)
is bijective. Then find its inverse.
First we prove the function is injective. Assume f (x1, y1) = f (x2, y2). Then
(x2

1 +1)y1 = (x2
2 +1)y2 and x3

1 = x3
2. Since the real-valued function f (x)= x3 is one-

to-one, it follows that x1 = x2. Since x1 = x2, and x2
1 +1 > 0 we may divide both

sides of (x2
1 +1)y1 = (x2

1 +1)y2 by (x2
1 +1) to get y1 = y2. Hence (x1, y1)= (x2, y2).

Now we prove the function is surjective. Let (a,b) ∈ R2. Set x = b1/3 and y =
a/(b2/3 +1). Then f (x, y) = ((b2/3 +1) a

b2/3+1 , (b1/3)3) = (a,b). It now follows that f is
bijective.
Finally, we compute the inverse. Write f (x, y)= (u,v). Interchange variables to
get (x, y)= f (u,v)= ((u2+1)v,u3). Thus x = (u2+1)v and y= u3. Hence u = y1/3 and
v = x

y2/3+1 . Therefore f −1(x, y)= (u,v)=
(
y1/3, x

y2/3+1

)
.

9. Consider the function f : R×N→N×R defined as f (x, y) = (y,3xy). Check that
this is bijective; find its inverse.
To see that this is injective, suppose f (a,b) = f (c,d). This means (b,3ab) =
(d,3cd). Since the first coordinates must be equal, we get b = d. As the second
coordinates are equal, we get 3ab = 3dc, which becomes 3ab = 3bc. Note that,
from the definition of f , b ∈ N, so b 6= 0. Thus we can divide both sides of
3ab = 3bc by the non-zero quantity 3b to get a = c. Now we have a = c and b = d,
so (a,b)= (c,d). It follows that f is injective.
Next we check that f is surjective. Given any (b, c) in the codomain N×R, notice
that ( c

3b ,b) belongs to the domain R×N, and f ( c
3b ,b)= (b, c). Thus f is surjective.

As it is both injective and surjective, it is bijective; thus the inverse exists.
To find the inverse, recall that we obtained f ( c

3b ,b)= (b, c). Then f −1 f ( c
3b ,b)=

f −1(b, c), which reduces to ( c
3b ,b) = f −1(b, c). Replacing b and c with x and y,

respectively, we get f −1(x, y)= ( y
3x , x).
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Section 12.6 Exercises
1. Consider the function f : R→ R defined as f (x) = x2 + 3. Find f ([−3,5]) and

f −1([12,19]). Answers: f ([−3,5])= [3,28]; f −1([12,19])= [−4,−3]∪ [3,4].
3. This problem concerns functions f : {1,2,3,4,5,6,7} → {0,1,2,3,4}. How many

such functions have the property that | f −1({3})| = 3? Answer: 44 (7
3
)
.

5. Consider a function f : A → B and a subset X ⊆ A. We observed in Section 12.6
that f −1( f (X )) 6= X in general. However X ⊆ f −1( f (X )) is always true. Prove this.

Proof. Suppose a ∈ X . Thus f (a) ∈ { f (x) : x ∈ X } = f (X ), that is f (a) ∈ f (X ). Now,
by definition of preimage, we have f −1( f (X )) = {x ∈ A : f (x) ∈ f (X )}. Since a ∈ A
and f (a) ∈ f (X ), it follows that a ∈ f −1( f (X )). This proves X ⊆ f −1( f (X )). ■

7. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∩ X )⊆ f (W)∩ f (X ).

Proof. Suppose b ∈ f (W ∩ X ). This means b ∈ { f (x) : x ∈W ∩ X }, that is b = f (a)
for some a ∈ W ∩ X . Since a ∈ W we have b = f (a) ∈ { f (x) : x ∈W} = f (W). Since
a ∈ X we have b = f (a) ∈ { f (x) : x ∈ X }= f (X ). Thus b is in both f (W) and f (X ), so
b ∈ f (W)∩ f (X ). This completes the proof that f (W ∩ X )⊆ f (W)∩ f (X ). ■

9. Given a function f : A → B and subsets W , X ⊆ A, prove f (W ∪ X )= f (W)∪ f (X ).

Proof. First we will show f (W ∪ X ) ⊆ f (W)∪ f (X ). Suppose b ∈ f (W ∪ X ). This
means b ∈ { f (x) : x ∈W ∪ X }, that is, b = f (a) for some a ∈ W ∪ X . Thus a ∈ W
or a ∈ X . If a ∈ W, then b = f (a) ∈ { f (x) : x ∈W} = f (W). If a ∈ X , then b = f (a) ∈
{ f (x) : x ∈ X }= f (X ). Thus b is in f (W) or f (X ), so b ∈ f (W)∪ f (X ). This completes
the proof that f (W ∪ X )⊆ f (W)∪ f (X ).
Next we will show f (W)∪ f (X )⊆ f (W ∪ X ). Suppose b ∈ f (W)∪ f (X ). This means
b ∈ f (W) or b ∈ f (X ). If b ∈ f (W), then b = f (a) for some a ∈W. If b ∈ f (X ), then
b = f (a) for some a ∈ X . Either way, b = f (a) for some a that is in W or X . That
is, b = f (a) for some a ∈W ∪ X . But this means b ∈ f (W ∪ X ). This completes the
proof that f (W)∪ f (X )⊆ f (W ∪ X ).
The previous two paragraphs show f (W ∪ X )= f (W)∪ f (X ). ■

11. Given f : A → B and subsets Y , Z ⊆ B, prove f −1(Y ∪Z)= f −1(Y )∪ f −1(Z).

Proof. First we will show f −1(Y ∪Z) ⊆ f −1(Y )∪ f −1(Z). Suppose a ∈ f −1(Y ∪Z).
By Definition 12.9, this means f (a) ∈ Y ∪ Z. Thus, f (a) ∈ Y or f (a) ∈ Z. If
f (a) ∈ Y , then a ∈ f −1(Y ), by Definition 12.9. Similarly, if f (a) ∈ Z, then a ∈
f −1(Z). Hence a ∈ f −1(Y ) or a ∈ f −1(Z), so a ∈ f −1(Y )∪ f −1(Z). Consequently
f −1(Y ∪Z)⊆ f −1(Y )∪ f −1(Z).
Next we show f −1(Y )∪ f −1(Z) ⊆ f −1(Y ∪ Z). Suppose a ∈ f −1(Y )∪ f −1(Z). This
means a ∈ f −1(Y ) or a ∈ f −1(Z). Hence, by Definition 12.9, f (a) ∈ Y or f (a) ∈ Z,
which means f (a) ∈Y∪Z. But by Definition 12.9, f (a) ∈Y∪Z means a ∈ f −1(Y∪Z).
Consequently f −1(Y )∪ f −1(Z)⊆ f −1(Y ∪Z).
The previous two paragraphs show f −1(Y ∪Z)= f −1(Y )∪ f −1(Z). ■
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13. Let f : A → B be a function, and X ⊆ A. Prove or disprove: f
(
f −1( f (X ))

)= f (X ).

Proof. First we will show f
(
f −1( f (X ))

) ⊆ f (X ). Suppose y ∈ f
(
f −1( f (X ))

)
. By

definition of image, this means y= f (x) for some x ∈ f −1( f (X )). But by definition
of preimage, x ∈ f −1( f (X )) means f (x) ∈ f (X ). Thus we have y = f (x) ∈ f (X ), as
desired.

Next we show f (X ) ⊆ f
(
f −1( f (X ))

)
. Suppose y ∈ f (X ). This means y = f (x) for

some x ∈ X . Then f (x)= y ∈ f (X ), which means x ∈ f −1( f (X )). Then by definition
of image, f (x) ∈ f ( f −1( f (X ))). Now we have y= f (x) ∈ f ( f −1( f (X ))), as desired.

The previous two paragraphs show f
(
f −1( f (X ))

)= f (X ). ■

Chapter 13 Exercises
Section 13.1 Exercises

1. R and (0,∞)
Observe that the function f (x) = ex sends R to (0,∞). It is injective because
f (x)= f (y) implies ex = ey, and taking ln of both sides gives x = y. It is surjective
because if b ∈ (0,∞), then f (ln(b)) = b. Therefore, because of the bijection
f :R→ (0,∞), it follows that |R| = |(0,∞)|.

3. R and (0,1)
Observe that the function 1

π
f (x) = cot−1(x) sends R to (0,1). It is injective and

surjective by elementary trigonometry. Therefore, because of the bijection
f :R→ (0,1), it follows that |R| = |(0,1)|.

5. A = {3k : k ∈Z} and B = {7k : k ∈Z}
Observe that the function f (x) = 7

3 x sends A to B. It is injective because
f (x) = f (y) implies 7

3 x = 7
3 y, and multiplying both sides by 3

7 gives x = y. It is
surjective because if b ∈ B, then b = 7k for some integer k. Then 3k ∈ A, and
f (3k) = 7k = b. Therefore, because of the bijection f : A → B, it follows that
|A| = |B|.

7. Z and S = {
. . . , 1

8 , 1
4 , 1

2 ,1,2,4,8,16, . . .
}

Observe that the function f :Z→ S defined as f (n)= 2n is bijective: It is injective
because f (m)= f (n) implies 2m = 2n, and taking log2 of both sides produces m = n.
It is surjective because any element b of S has form b = 2n for some integer n,
and therefore f (n) = 2n = b. Because of the bijection f : Z→ S, it follows that
|Z| = |S|.

9. {0,1}×N and N
Consider the function f : {0,1}×N→N defined as f (a,n)= 2n−a. This is injective
because if f (a,n)= f (b,m), then 2n−a = 2m−b. Now if a were unequal to b, one
of a or b would be 0 and the other would be 1, and one side of 2n−a = 2m−b
would be odd and the other even, a contradiction. Therefore a = b. Then
2n−a = 2m−b becomes 2n−a = 2m−a; add a to both sides and divide by 2 to
get m = n. Thus we have a = b and m = n, so (a,n) = (b,m), so f is injective.
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To see that f is surjective, take any b ∈N. If b is even, then b = 2n for some
integer n, and f (0,n)= 2n−0= b. If b is odd, then b = 2n+1 for some integer n.
Then f (1,n+1)= 2(n+1)−1= 2n+1= b. Therefore f is surjective. Then f is a
bijection, so |{0,1}×N| = |N|.

11. [0,1] and (0,1)

Proof. Consider the subset X = { 1
n : n ∈N}⊆ [0,1]. Let f : [0,1]→ [0,1) be defined

as f (x)= x if x ∈ [0,1]− X and f ( 1
n )= 1

n+1 for any 1
n ∈ X . It is easy to check that

f is a bijection. Next let Y = {
1− 1

n : n ∈N}⊆ [0,1), and define g : [0,1)→ (0,1) as
g(x)= x if x ∈ [0,1)−Y and g(1− 1

n )= 1− 1
n+1 for any 1− 1

n ∈Y . As in the case of f , it
is easy to check that g is a bijection. Therefore the composition g◦ f : [0,1]→ (0,1)
is a bijection. (See Theorem 12.2.) We conclude that |[0,1]| = |(0,1)|. ■

13. P(N) and P(Z)
Outline: By Exercise 18 of Section 12.2, we have a bijection f :N→Z defined as
f (n)= (−1)n(2n−1)+1

4
. Now define a function Φ : P(N) →P(Z) as Φ(X ) = { f (x) :

x ∈ X }. Check that Φ is a bijection.
15. Find a formula for the bijection f in Example 13.2.

Hint: Consider the function f from Exercise 18 of Section 12.2.

Section 13.2 Exercises

1. Prove that the set A = {ln(n) : n ∈N}⊆R is countably infinite.
Just note that its elements can be written in infinite list form as ln(1), ln(2), ln(3), · · · .
Thus A is countably infinite.

3. Prove that the set A = {(5n,−3n) : n ∈Z} is countably infinite.
Consider the function f : Z→ A defined as f (n) = (5n,−3n). This is clearly
surjective, and it is injective because f (n)= f (m) gives (5n,−3n)= (5m,−3m), so
5n = 5m, hence m = n. Thus, because f is surjective, |Z| = |A|, and |A| = |Z| = ℵ0.
Therefore A is countably infinite.

5. Prove or disprove: There exists a countably infinite subset of the set of irrational
numbers.
This is true. Just consider the set consisting of the irrational numbers
π
1 , π2 , π3 , π4 , · · · .

7. Prove or disprove: The set Q100 is countably infinite.
This is true. Note Q100 = Q×Q×·· ·×Q (100 times), and since Q is countably
infinite, it follows from the corollary of Theorem 13.5 that this product is
countably infinite.

9. Prove or disprove: The set {0,1}×N is countably infinite.
This is true. Note that {0,1}×N can be written in infinite list form as
(0,1), (1,1), (0,2), (1,2), (0,3), (1,3), (0,4), (1,4), · · · . Thus the set is countably infinite.
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11. Partition N into 8 countably infinite sets.

For each i ∈ {1,2,3,4,5,6,7,8}, let X i be those natural numbers that are congruent
to i modulo 8, that is,

X1 = {1,9,17,25,33, . . .}

X2 = {2,10,18,26,34, . . .}

X3 = {3,11,19,27,35, . . .}

X4 = {4,12,20,28,36, . . .}

X5 = {5,13,21,29,37, . . .}

X6 = {6,14,22,30,38, . . .}

X7 = {7,15,13,31,39, . . .}

X8 = {8,16,24,32,40, . . .}

13. If A = {X ⊂N : X is finite}, then |A| = ℵ0.

Proof. This is true. To show this we will describe how to arrange the items of
A in an infinite list X1, X2, X3, X4, . . ..
For each natural number n, let pn be the nth prime number. Thus p1 = 2,
p2 = 3, p3 = 5, p4 = 7, p5 = 11, and so on. Now consider any element X ∈ A. If
X 6= ;, then X = {n1,n2,n3, ...,nk}, where k = |X | and ni ∈ N for each 1 ≤ i ≤ k.
Define a function f : A → N∪ {0} as follows: f ({n1,n2,n3, ...,nk}) = pn1 pn2 · · · pnk .
For example, f ({1,2,3})= p1 p2 p3 = 2 ·3 ·5= 30, and f ({3,5})= p3 p5 = 5 ·11= 55, etc.
Also, we should not forget that ;∈ A, and we define f (;)= 0.
Note that f : A → N∪ {0} is an injection: Let X = {n1,n2,n3, ...,nk} and Y =
{m1,m2,m3, ...,m`}, and X 6= Y . Then there is an integer a that belongs to
one of X or Y but not the other. Then the prime factorization of one of the
numbers f (X ) and f (Y ) uses the prime number pa but the prime factorization
of the other does not use pa. It follows that f (X ) 6= f (Y ) by the fundamental
theorem of arithmetic. Thus f is injective.
So each set X ∈ A is associated with an integer f (X )≥ 0, and no two different
sets are associated with the same number. Thus we can list the elements in
X ∈ A in increasing order of the numbers f (X ). The list begins as

;, {1}, {2}, {3}, {1,2}, {4}, {1,3}, {5}, {6}, {1,4}, {2,3}, {7}, . . .

It follows that A is countably infinite. ■

15. Hint: Use the fundamental theorem of arithmetic.

Section 13.3 Exercises

1. Suppose B is an uncountable set and A is a set. Given that there is a surjective
function f : A → B, what can be said about the cardinality of A?
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The set A must be uncountable, as follows. For each b ∈ B, let ab be an
element of A for which f (ab) = b. (Such an element must exist because f is
surjective.) Now form the set U = {ab : b ∈ B}. Then the function f : U → B is
bijective, by construction. Then since B is uncountable, so is U. Therefore U is
an uncountable subset of A, so A is uncountable by Theorem 13.9.

3. Prove or disprove: If A is uncountable, then |A| = |R|.
This is false. Let A = P(R). Then A is uncountable, and by Theorem 13.7,
|R| < |P(R)| = |A|.

5. Prove or disprove: The set {0,1}×R is uncountable.
This is true. To see why, first note that the function f :R→ {0}×R defined as
f (x) = (0, x) is a bijection. Thus |R| = |{0}×R|, and since R is uncountable, so is
{0}×R. Then {0}×R is an uncountable subset of the set {0,1}×R, so {0,1}×R is
uncountable by Theorem 13.9.

7. Prove or disprove: If A ⊆ B and A is countably infinite and B is uncountable,
then B− A is uncountable.
This is true. To see why, suppose to the contrary that B−A is countably infinite.
Then B = A∪ (B− A) is a union of countably infinite sets, and thus countable,
by Theorem 13.6. This contradicts the fact that B is uncountable.

Exercises for Section 13.4

1. Show that if A ⊆ B and there is an injection g : B → A, then |A| = |B|.
Just note that the map f : A → B defined as f (x)= x is an injection. Now apply
the Cantor-Bernstein-Schröeder theorem.

3. Let F be the set of all functions N→ {
0,1}. Show that |R| = |F |.

Because |R| = |P(N)|, it suffices to show that |F | = |P(N)|. To do this, we will
exhibit a bijection f : F →P(N). Define f as follows. Given a function ϕ ∈F ,
let f (ϕ)= {n ∈N :ϕ(n)= 1}. To see that f is injective, suppose f (ϕ)= f (θ). Then
{n ∈N :ϕ(n) = 1} = {n ∈N : θ(n) = 1}. Put X = {n ∈N :ϕ(n) = 1}. Now we see that if
n ∈ X , then ϕ(n) = 1 = θ(n). And if n ∈N− X , then ϕ(n) = 0 = θ(n). Consequently
ϕ(n)= θ(n) for any n ∈N, so ϕ= θ. Thus f is injective. To see that f is surjective,
take any X ∈P(N). Consider the function ϕ ∈F for which ϕ(n)= 1 if n ∈ X and
ϕ(n)= 0 if n ∉ X . Then f (ϕ)= X , so f is surjective.

5. Consider the subset B = {
(x, y) : x2 + y2 ≤ 1

}⊆R2. Show that |B| = |R2|.
This will follow from the Cantor-Bernstein-Schröeder theorem provided that
we can find injections f : B →R2 and g :R2 → B. The function f : B →R2 defined
as f (x, y)= (x, y) is clearly injective. For g :R2 → B, consider the function

g(x, y)=
(

x2 + y2

x2 + y2 +1
x,

x2 + y2

x2 + y2 +1
y
)
.

Verify that this is an injective function g :R2 → B.
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7. Prove or disprove: If there is a injection f : A → B and a surjection g : A → B,
then there is a bijection h : A → B.

This is true. Here is an outline of a proof. Define a function g′ : B → A as
follows. For each b ∈ B, choose an element xb ∈ g−1({x}). (That is, choose an
element xb ∈ A for which g(xb)= b.) Now let g′ : B → A be the function defined
as g′(b) = xb. Check that g′ is injective and apply the the Cantor-Bernstein-
Schröeder theorem.


