
CHAPTER 11

Relations

In mathematics there are endless ways that two entities can be related
to each other. Consider the following mathematical statements.

5< 10 5≤ 5 6= 30
5 5 | 80 7> 4 x 6= y 8 - 3

a ≡ b ( mod n) 6 ∈Z X ⊆Y π≈ 3.14 0≥−1
p

2 ∉Z Z 6⊆N

In each case two entities appear on either side of a symbol, and we
interpret the symbol as expressing some relationship between the two
entities. Symbols such as <,≤,=, |, -,≥,>, ∈ and ⊂, etc., are called relations
because they convey relationships among things.

Relations are significant. In fact, you would have to admit that there
would be precious little left of mathematics if we took away all the relations.
Therefore it is important to have a firm understanding of them, and this
chapter is intended to develop that understanding.

Rather than focusing on each relation individually (an impossible task
anyway since there are infinitely many different relations), we will develop
a general theory that encompasses all relations. Understanding this
general theory will give us the conceptual framework and language needed
to understand and discuss any specific relation.

Before stating the theoretical definition of a relation, let’s look at a
motivational example. This example will lead naturally to our definition.

Consider the set A = {
1,2,3,4,5

}
. (There’s nothing special about this

particular set; any set of numbers would do for this example.) Elements of
A can be compared to each other by the symbol “<.” For example, 1 < 4,
2< 3, 2< 4, and so on. You have no trouble understanding this because the
notion of numeric order is so ingrained. But imagine you had to explain
it to an idiot savant, one with an obsession for detail but absolutely no
understanding of the meaning of (or relationships between) integers. You
might consider writing down for your student the following set:

R = {
(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)

}
.
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The set R encodes the meaning of the < relation for elements in A. An
ordered pair (a,b) appears in the set if and only if a < b. If asked whether
or not it is true that 3 < 4, your student could look through R until he
found the ordered pair (3,4); then he would know 3 < 4 is true. If asked
about 5< 2, he would see that (5,2) does not appear in R, so 5 6< 2. The set
R, which is a subset of A× A, completely describes the relation < for A.

Though it may seem simple-minded at first, this is exactly the idea
we will use for our main definition. This definition is general enough to
describe not just the relation < for the set A = {

1,2,3,4,5
}
, but any relation

for any set A.
Definition 11.1 A relation on a set A is a subset R ⊆ A× A. We often
abbreviate the statement (x, y) ∈ R as xR y. The statement (x, y) ∉ R is
abbreviated as x 6R y.

Notice that a relation is a set, so we can use what we know about sets
to understand and explore relations. But before getting deeper into the
theory of relations, let’s look at some examples of Definition 11.1.

Example 11.1 Let A = {
1,2,3,4

}
, and consider the following set:

R = {
(1,1), (2,1), (2,2), (3,3), (3,2), (3,1), (4,4), (4,3), (4,2), (4,1)

}⊆ A× A.

The set R is a relation on A, by Definition 11.1. Since (1,1) ∈ R, we have
1R1. Similarly 2R1 and 2R2, and so on. However, notice that (for example)
(3,4) ∉ R, so 3 6R 4. Observe that R is the familiar relation ≥ for the set A.

Chapter 1 proclaimed that all of mathematics can be described with
sets. Just look at how successful this program has been! The greater-
than-or-equal-to relation is now a set R. (We might even express this in
the rather cryptic form ≥= R.)

Example 11.2 Let A = {
1,2,3,4

}
, and consider the following set:

S = {
(1,1), (1,3), (3,1), (3,3), (2,2), (2,4), (4,2), (4,4)

}⊆ A× A.

Here we have 1S1, 1S3, 4S2, etc., but 3 6S 4 and 2 6S 1. What does S mean?
Think of it as meaning “has the same parity as.” Thus 1S1 reads “1 has
the same parity as 1,” and 4S2 reads “4 has the same parity as 2.”

Example 11.3 Consider relations R and S of the previous two examples.
Note that R∩S = {

(1,1), (2,2), (3,3), (3,1), (4,4), (4,2)
}⊆ A×A is a relation on A.

The expression x(R∩S)y means “x ≥ y, and x, y have the same parity.”
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Example 11.4 Let B = {
0,1,2,3,4,5

}
, and consider the following set:

U = {
(1,3), (3,3), (5,2), (2,5), (4,2)

}⊆ B×B.

Then U is a relation on B because U ⊆ B×B. You may be hard-pressed
to invent any “meaning” for this particular relation. A relation does not
have to have any meaning. Any random subset of B×B is a relation on B,
whether or not it describes anything familiar.

Some relations can be described with pictures. For example, we can
depict the above relation U on B by drawing points labeled by elements of
B. The statement (x, y) ∈U is then represented by an arrow pointing from
x to y, a graphic symbol meaning “x relates to y.” Here’s a picture of U:

0 1 2

3 4 5

The next picture illustrates the relation R on the set A = {
a,b, c,d

}
, where

xR y means x comes before y in the alphabet. According to Definition 11.1,
as a set this relation is R = {

(a,b), (a, c), (a,d), (b, c), (b,d), (c,d)
}
. You may

feel that the picture conveys the relation better than the set does. They
are two different ways of expressing the same thing. In some instances
pictures are more convenient than sets for discussing relations.

d

cb

a

Although such diagrams can help us visualize relations, they do have
their limitations. If A and R were infinite, then the diagram would be
impossible to draw, but the set R might be easily expressed in set-builder
notation. Here are some examples.

Example 11.5 Consider the set R = {
(x, y) ∈Z×Z : x− y ∈N}⊆Z×Z. This

is the > relation on the set A =Z. It is infinite because there are infinitely
many ways to have x > y where x and y are integers.

Example 11.6 The set R = {
(x, x) : x ∈ R}⊆ R×R is the relation = on the

set R, because xR y means the same thing as x = y. Thus R is a set that
expresses the notion of equality of real numbers.
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Exercises for Section 11.0
1. Let A = {

0,1,2,3,4,5
}
. Write out the relation R that expresses > on A. Then

illustrate it with a diagram.
2. Let A = {

1,2,3,4,5,6
}
. Write out the relation R that expresses | (divides) on A.

Then illustrate it with a diagram.
3. Let A = {

0,1,2,3,4,5
}
. Write out the relation R that expresses ≥ on A. Then

illustrate it with a diagram.
4. Here is a diagram for a relation R on a set A. Write the sets A and R.

0 1 2

3 4 5

5. Here is a diagram for a relation R on a set A. Write the sets A and R.
0 1 2

3 4 5

6. Congruence modulo 5 is a relation on the set A =Z. In this relation xR y means
x ≡ y (mod 5). Write out the set R in set-builder notation.

7. Write the relation < on the set A =Z as a subset R of Z×Z. This is an infinite
set, so you will have to use set-builder notation.

8. Let A = {
1,2,3,4,5,6

}
. Observe that ;⊆ A×A, so R =; is a relation on A. Draw

a diagram for this relation.
9. Let A = {

1,2,3,4,5,6
}
. How many different relations are there on the set A?

10. Consider the subset R = (R×R)−{
(x, x) : x ∈R}⊆R×R. What familiar relation on

R is this? Explain.
11. Given a finite set A, how many different relations are there on A?

In the following exercises, subsets R of R2 = R×R or Z2 =Z×Z are indicated by
gray shading. In each case, R is a familiar relation on R or Z. State it.

12.
R

13.
R

14. 15.
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11.1 Properties of Relations
A relational expression xR y is a statement (or an open sentence); it is either
true or false. For example, 5 < 10 is true, and 10 < 5 is false. (Thus an
operation like + is not a relation, because, for instance, 5+10 has a numeric
value, not a T/F value.) Since relational expressions have T/F values, we
can combine them with logical operators; for example, xR y ⇒ yRx is a
statement or open sentence whose truth or falsity may depend on x and y.

With this in mind, note that some relations have properties that others
don’t have. For example, the relation ≤ on Z satisfies x ≤ x for every x ∈Z.
But this is not so for < because x < x is never true. The next definition
lays out three particularly significant properties that relations may have.

Definition 11.2 Suppose R is a relation on a set A.
1. Relation R is reflexive if xRx for every x ∈ A.

That is, R is reflexive if ∀x ∈ A, xRx.
2. Relation R is symmetric if xR y implies yRx for all x, y ∈ A

That is, R is symmetric if ∀x, y ∈ A, xR y ⇒ yRx.
3. Relation R is transitive if whenever xR y and yRz, then also xRz.

That is, R is transitive if ∀x, y, z ∈ A,
(
(xR y)∧ (yRz)

)⇒ xRz.

To illustrate this, let’s consider the set A = Z. Examples of reflexive
relations on Z include ≤, =, and |, because x ≤ x, x = x and x |x are all true
for any x ∈Z. On the other hand, >, <, 6= and - are not reflexive for none
of the statements x < x, x > x, x 6= x and x - x is ever true.

The relation 6= is symmetric, for if x 6= y, then surely y 6= x also. Also,
the relation = is symmetric because x = y always implies y= x.

The relation ≤ is not symmetric, as x ≤ y does not necessarily imply
y≤ x. For instance 5≤ 6 is true, but 6≤ 5 is false. Notice (x ≤ y) ⇒ (y≤ x)
is true for some x and y (for example, it is true when x = 2 and y= 2), but
still ≤ is not symmetric because it is not the case that (x ≤ y) ⇒ (y≤ x) is
true for all integers x and y.

The relation ≤ is transitive because whenever x ≤ y and y≤ z, it also
is true that x ≤ z. Likewise <,≥,> and = are all transitive. Examine the
following table and be sure you understand why it is labeled as it is.

Relations on Z: < ≤ = | - 6=
Reflexive no yes yes yes no no
Symmetric no no yes no no yes
Transitive yes yes yes yes no no
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Example 11.7 Here A = {
b, c,d, e

}
, and R is the following relation on A:

R = {
(b,b), (b, c), (c,b), (c, c), (d,d), (b,d), (d,b), (c,d), (d, c)

}
.

This relation is not reflexive, for although bRb, cRc and dRd, it is not
true that eRe. For a relation to be reflexive, xRx must be true for all x ∈ A.

The relation R is symmetric, because whenever we have xR y, it follows
that yRx too. Observe that bRc and cRb; bRd and dRb; dRc and cRd.
Take away the ordered pair (c,b) from R, and R is no longer symmetric.

The relation R is transitive, but it takes some work to check it. We
must check that the statement (xR y∧ yRz)⇒ xRz is true for all x, y, z ∈ A.
For example, taking x = b, y = c and z = d, we have (bRc∧ cRd) ⇒ bRd,
which is the true statement (T ∧T) ⇒ T. Likewise, (bRd∧dRc) ⇒ bRc is
the true statement (T ∧T) ⇒ T. Take note that if x = b, y = e and z = c,
then (bRe∧ eRc) ⇒ bRc becomes (F ∧F) ⇒ T, which is still true. It’s not
much fun, but going through all the combinations, you can verify that
(xR y∧ yRz) ⇒ xRz is true for all choices x, y, z ∈ A. (Try at least a few of
them.)

The relation R from Example 11.7 has a meaning. You can think of
xR y as meaning that x and y are both consonants. Thus bRc because b
and c are both consonants; but b 6Re because it’s not true that b and e are
both consonants. Once we look at it this way, it’s immediately clear that R
has to be transitive. If x and y are both consonants and y and z are both
consonants, then surely x and z are both consonants. This illustrates a
point that we will see again later in this section: Knowing the meaning of
a relation can help us understand it and prove things about it.

Here is a picture of R. Notice that we can immediately spot several
properties of R that may not have been so clear from its set description.
For instance, we see that R is not reflexive because it lacks a loop at e,
hence e 6Re.

b

c

d

e

Figure 11.1. The relation R from Example 11.7
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In what follows, we summarize how to spot the various properties of a
relation from its diagram. Compare these with Figure 11.1.

1.
A relation is
reflexive if
for each point x ...

x ...there is a
loop at x: x

2.

A relation is
symmetric if
whenever there is an
arrow from x to y ...

x y

...there is also
an arrow from
y back to x:

x y

3.

A relation is
transitive if
whenever there are
arrows from x to y
and y to z ...

x

y

z

...there is also
an arrow from
x to z:

x

y

z

(If x = z, this means
that if there are
arrows from x to y
and from y to x ... x

y ...there is also
a loop from
x back to x.)

x

y

Consider the bottom diagram in Box 3, above. The transitive property
demands (xR y∧ yRx)⇒ xRx. Thus, if xR y and yRx in a transitive relation,
then also xRx, so there is a loop at x. In this case (yRx∧ xR y)⇒ yR y, so
there will be a loop at y too.

Although these visual aids can be illuminating, their use is limited be-
cause many relations are too large and complex to be adequately described
as diagrams. For example, it would be impossible to draw a diagram
for the relation ≡ (mod n), where n ∈ N. Such a relation would best be
explained in a more theoretical (and less visual) way.

We next prove that ≡ (mod n) is reflexive, symmetric and transitive.
Obviously we will not glean this from a drawing. Instead we will prove it
from the properties of ≡ (mod n) and Definition 11.2. Pay attention to this
example. It illustrates how to prove things about relations.
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Example 11.8 Prove the following proposition.

Proposition Let n ∈N. The relation ≡ (mod n) on the set Z is reflexive,
symmetric and transitive.

Proof. First we will show that ≡ (mod n) is reflexive. Take any integer x ∈Z,
and observe that n |0, so n | (x− x). By definition of congruence modulo n,
we have x ≡ x (mod n). This shows x ≡ x (mod n) for every x ∈Z, so ≡ (mod n)
is reflexive.

Next, we will show that ≡ (mod n) is symmetric. For this, we must show
that for all x, y ∈Z, the condition x ≡ y (mod n) implies that y≡ x (mod n).
We use direct proof. Suppose x ≡ y (mod n). Thus n | (x− y) by definition
of congruence modulo n. Then x− y = na for some a ∈ Z by definition of
divisibility. Multiplying both sides by −1 gives y− x = n(−a). Therefore
n | (y− x), and this means y ≡ x (mod n). We’ve shown that x ≡ y (mod n)
implies that y≡ x (mod n), and this means ≡ (mod n) is symmetric.

Finally we will show that ≡ (mod n) is transitive. For this we must
show that if x ≡ y (mod n) and y ≡ z (mod n), then x ≡ z (mod n). Again
we use direct proof. Suppose x ≡ y (mod n) and y ≡ z (mod n). This
means n | (x− y) and n | (y− z). Therefore there are integers a and b for
which x− y = na and y− z = nb. Adding these two equations, we obtain
x−z = na+nb. Consequently, x−z = n(a+b), so n | (x−z), hence x ≡ z (mod n).
This completes the proof that ≡ (mod n) is transitive.

The past three paragraphs have shown that ≡ (mod n) is reflexive,
symmetric and transitive, so the proof is complete. ■

As you continue with mathematics you will find that the reflexive,
symmetric and transitive properties take on special significance in a
variety of settings. In preparation for this, the next section explores
further consequences of these properties. But first work some of the
following exercises.

Exercises for Section 11.1

1. Consider the relation R = {
(a,a), (b,b), (c, c), (d,d), (a,b), (b,a)

}
on set A = {

a,b, c,d
}
.

Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.
2. Consider the relation R = {

(a,b), (a, c), (c, c), (b,b), (c,b), (b, c)
}
on the set A = {

a,b, c
}
.

Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.
3. Consider the relation R = {

(a,b), (a, c), (c,b), (b, c)
}
on the set A = {

a,b, c
}
. Is R

reflexive? Symmetric? Transitive? If a property does not hold, say why.
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4. Let A = {
a,b, c,d

}
. Suppose R is the relation

R = {
(a,a), (b,b), (c, c), (d,d), (a,b), (b,a), (a, c), (c,a),

(a,d), (d,a), (b, c), (c,b), (b,d), (d,b), (c,d), (d, c)
}
.

Is R reflexive? Symmetric? Transitive? If a property does not hold, say why.
5. Consider the relation R = {

(0,0), (
p

2,0), (0,
p

2), (
p

2,
p

2)
}
on R. Is R reflexive?

Symmetric? Transitive? If a property does not hold, say why.
6. Consider the relation R = {

(x, x) : x ∈ Z}
on Z. Is R reflexive? Symmetric?

Transitive? If a property does not hold, say why. What familiar relation is
this?

7. There are 16 possible different relations R on the set A = {
a,b

}
. Describe all of

them. (A picture for each one will suffice, but don’t forget to label the nodes.)
Which ones are reflexive? Symmetric? Transitive?

8. Define a relation on Z as xR y if |x−y| < 1. Is R reflexive? Symmetric? Transitive?
If a property does not hold, say why. What familiar relation is this?

9. Define a relation on Z by declaring xR y if and only if x and y have the same
parity. Is R reflexive? Symmetric? Transitive? If a property does not hold, say
why. What familiar relation is this?

10. Suppose A 6= ;. Since ;⊆ A× A, the set R =; is a relation on A. Is R reflexive?
Symmetric? Transitive? If a property does not hold, say why.

11. Suppose A = {
a,b, c,d

}
and R = {

(a,a), (b,b), (c, c), (d,d)
}
. Is R reflexive? Symmet-

ric? Transitive? If a property does not hold, say why.
12. Prove that the relation | (divides) on the set Z is reflexive and transitive. (Use

Example 11.8 as a guide if you are unsure of how to proceed.)
13. Consider the relation R = {

(x, y) ∈R×R : x− y ∈Z}
on R. Prove that this relation

is reflexive, symmetric and transitive.
14. Suppose R is a symmetric and transitive relation on a set A, and there is an

element a ∈ A for which aRx for every x ∈ A. Prove that R is reflexive.
15. Prove or disprove: If a relation is symmetric and transitive, then it is also

reflexive.
16. Define a relation R on Z by declaring that xR y if and only if x2 ≡ y2 (mod 4).

Prove that R is reflexive, symmetric and transitive.
17. Modifying the above Exercise 8 (above) slightly, define a relation ∼ on Z as x ∼ y

if and only if |x− y| ≤ 1. Say whether ∼ is reflexive. Is it symmetric? Transitive?
18. The table on page 179 shows that relations on Z may obey various combinations

of the reflexive, symmetric and transitive properties. In all, there are 23 =
8 possible combinations, and the table shows 5 of them. (There is some
redundancy, as ≤ and | have the same type.) Complete the table by finding
examples of relations on Z for the three missing combinations.
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11.2 Equivalence Relations
The relation = on the set Z (or on any set A) is reflexive, symmetric
and transitive. There are many other relations that are also reflexive,
symmetric and transitive. Relations that have all three of these properties
occur very frequently in mathematics and often play quite significant roles.
(For instance, this is certainly true of the relation = .) Such relations are
given a special name. They are called equivalence relations.

Definition 11.3 A relation R on a set A is an equivalence relation if
it is reflexive, symmetric and transitive.

As an example, Figure 11.2 shows four different equivalence relations
R1,R2,R3 and R4 on the set A = {−1,1,2,3,4

}
. Each one has its own meaning,

as labeled. For example, in the second row the relation R2 literally means
“has the same parity as.” So 1R2 3 means “1 has the same parity as 3,” etc.

Relation R Diagram Equivalence classes
(see next page)

“is equal to” (=)

R1 =
{
(−1,−1), (1,1), (2,2), (3,3), (4,4)

}
−1

3

1

4

2 {−1
}
,

{
1
}
,

{
2
}
,

{
3
}
,

{
4
}

“has same parity as”
R2 =

{
(−1,−1), (1,1), (2,2), (3,3), (4,4),

(−1,1), (1,−1), (−1,3), (3,−1),
(1,3), (3,1), (2,4), (4,2)

}
−1

3

1

4

2 {−1,1,3
}
,

{
2,4

}

“has same sign as”
R3 =

{
(−1,−1), (1,1), (2,2), (3,3), (4,4),

(1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (3,4),
(4,3), (2,3), (3,2), (2,4), (4,2), (1,3), (3,1)

}
−1

3

1

4

2 {−1
}
,

{
1,2,3,4

}

“has same parity and sign as”

R4 =
{
(−1,−1), (1,1), (2,2), (3,3), (4,4),

(1,3), (3,1), (2,4), (4,2)
}

−1

3

1

4

2 {−1
}
,

{
1,3

}
,

{
2,4

}

Figure 11.2. Examples of equivalence relations on the set A = {−1,1,2,3,4
}
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The above diagrams make it easy to check that each relation is reflexive,
symmetric and transitive, i.e., that each is an equivalence relation. For
example, R1 is symmetric because xR1 y⇒ yR1x is always true: When x = y
it becomes T ⇒ T (true), and when x 6= y it becomes F ⇒ F (also true). In
a similar fashion, R1 is transitive because (xR1 y∧ yR1z)⇒ xR1z is always
true: It always works out to one of T ⇒ T, F ⇒ T or F ⇒ F. (Check this.)

As you can see from the examples in Figure 11.2, equivalence relations
on a set tend to express some measure of “sameness” among the elements
of the set, whether it is true equality or something weaker (like having
the same parity).

It’s time to introduce an important definition. Whenever you have
an equivalence relation R on a set A, it divides A into subsets called
equivalence classes. Here is the definition:

Definition 11.4 Suppose R is an equivalence relation on a set A. Given
any element a ∈ A, the equivalence class containing a is the subset{
x ∈ A : xRa

}
of A consisting of all the elements of A that relate to a. This

set is denoted as [a]. Thus the equivalence class containing a is the set
[a]= {

x ∈ A : xRa
}
.

Example 11.9 Consider the relation R1 in Figure 11.2. The equivalence
class containing 2 is the set [2] = {

x ∈ A : xR12
}
. Because in this relation

the only element that relates to 2 is 2 itself, we have [2] = {
2
}
. Other

equivalence classes for R1 are [−1]= {−1
}
, [1]= {

1
}
, [3]= {

3
}
and [4]= {

4
}
.

Thus this relation has five separate equivalence classes.

Example 11.10 Consider the relation R2 in Figure 11.2. The equivalence
class containing 2 is the set [2]= {

x ∈ A : xR22
}
. Because only 2 and 4 relate

to 2, we have [2] = {
2,4

}
. Observe that we also have [4] = {

x ∈ A : xR24
} ={

2,4
}
, so [2] = [4]. Another equivalence class for R2 is [1] = {

x ∈ A : xR21
}

= {−1,1,3
}
. In addition, note that [1] = [−1] = [3] = {−1,1,3

}
. Thus this

relation has just two equivalence classes, namely
{
2,4

}
and

{−1,1,3
}
.

Example 11.11 The relation R4 in Figure 11.2 has three equivalence
classes. They are [−1]= {−1

}
and [1]= [3]= {

1,3
}
and [2]= [4]= {

2,4
}
.

Don’t be misled by Figure 11.2. It’s important to realize that not
every equivalence relation can be drawn as a diagram involving nodes
and arrows. Even the simple relation R = {

(x, x) : x ∈ R}
, which expresses

equality in the set R, is too big to be drawn. Its picture would involve a
point for every real number and a loop at each point. Clearly that’s too
many points and loops to draw.
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We close this section with several other examples of equivalence rela-
tions on infinite sets.

Example 11.12 Let P be the set of all polynomials with real coefficients.
Define a relation R on P as follows. Given f (x), g(x) ∈ P, let f (x)R g(x) mean
that f (x) and g(x) have the same degree. Thus (x2 +3x−4)R (3x2 −2) and
(x3 +3x2 −4) 6R (3x2 −2), for example. It takes just a quick mental check to
see that R is an equivalence relation. (Do it.) It’s easy to describe the
equivalence classes of R. For example, [3x2+2] is the set of all polynomials
that have the same degree as 3x2 +2, that is, the set of all polynomials of
degree 2. We can write this as [3x2 +2]= {

ax2 +bx+ c : a,b, c ∈R,a 6= 0
}
.

Example 11.8 proved that for a given n ∈N the relation ≡ (mod n) is
reflexive, symmetric and transitive. Thus, in our new parlance, ≡ (mod n)
is an equivalence relation on Z. Consider the case n = 3. Let’s find the
equivalence classes of the equivalence relation ≡ (mod 3). The equivalence
class containing 0 seems like a reasonable place to start. Observe that

[0]= {
x ∈Z : x ≡ 0(mod 3)

}={
x ∈Z : 3 | (x−0)

}= {
x ∈Z : 3 | x

}= {
. . . ,−3,0,3,6,9, . . .

}
.

Thus the class [0] consists of all the multiples of 3. (Or, said differently,
[0] consists of all integers that have a remainder of 0 when divided by 3).
Note that [0] = [3] = [6] = [9], etc. The number 1 does not show up in the
set [0] so let’s next look at the equivalence class [1]:

[1]= {
x ∈Z : x ≡ 1(mod 3)

}= {
x ∈Z : 3 | (x−1)

}= {
. . . ,−5,−2,1,4,7,10, . . .

}
.

The equivalence class [1] consists of all integers that give a remainder of
1 when divided by 3. The number 2 is in neither of the sets [0] or [1], so
we next look at the equivalence class [2]:

[2]= {
x ∈Z : x ≡ 2(mod 3)

}= {
x ∈Z : 3 | (x−2)

}= {
. . . ,−4,−1,2,5,8,11, . . .

}
.

The equivalence class [2] consists of all integers that give a remainder of
2 when divided by 3. Observe that any integer is in one of the sets [0], [1]
or [2], so we have listed all of the equivalence classes. Thus ≡ (mod 3) has
exactly three equivalence classes, as described above.

Similarly, you can show that the equivalence relation ≡ (mod n) has n
equivalence classes [0], [1], [2], . . . , [n−1].
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Exercises for Section 11.2

1. Let A = {
1,2,3,4,5,6

}
, and consider the following equivalence relation on A:

R = {
(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,3), (3,2), (4,5), (5,4), (4,6), (6,4), (5,6), (6,5)

}
List the equivalence classes of R.

2. Let A = {
a,b, c,d, e

}
. Suppose R is an equivalence relation on A. Suppose R has

two equivalence classes. Also aRd, bRc and eRd. Write out R as a set.
3. Let A = {

a,b, c,d, e
}
. Suppose R is an equivalence relation on A. Suppose R has

three equivalence classes. Also aRd and bRc. Write out R as a set.
4. Let A = {

a,b, c,d, e
}
. Suppose R is an equivalence relation on A. Suppose also

that aRd and bRc, eRa and cRe. How many equivalence classes does R have?
5. There are two different equivalence relations on the set A = {

a,b
}
. Describe

them. Diagrams will suffice.
6. There are five different equivalence relations on the set A = {

a,b, c
}
. Describe

them all. Diagrams will suffice.
7. Define a relation R on Z as xR y if and only if 3x−5y is even. Prove R is an

equivalence relation. Describe its equivalence classes.
8. Define a relation R on Z as xR y if and only if x2 + y2 is even. Prove R is an

equivalence relation. Describe its equivalence classes.
9. Define a relation R on Z as xR y if and only if 4 |(x+3y). Prove R is an equivalence

relation. Describe its equivalence classes.
10. Suppose R and S are two equivalence relations on a set A. Prove that R∩S

is also an equivalence relation. (For an example of this, look at Figure 11.2.
Observe that for the equivalence relations R2,R3 and R4, we have R2∩R3 = R4.)

11. Prove or disprove: If R is an equivalence relation on an infinite set A, then R
has infinitely many equivalence classes.

12. Prove or disprove: If R and S are two equivalence relations on a set A, then
R∪S is also an equivalence relation on A.

13. Suppose R is an equivalence relation on a finite set A, and every equivalence
class has the same cardinality m. Express |R| in terms of m and |A|.

14. Suppose R is a reflexive and symmetric relation on a finite set A. Define
a relation S on A by declaring xS y if and only if for some n ∈ N there are
elements x1, x2, . . . , xn ∈ A satisfying xRx1, x1Rx2, x2Rx3, x3Rx4, . . . , xn−1Rxn, and
xnR y. Show that S is an equivalence relation and R ⊆ S. Prove that S is the
unique smallest equivalence relation on A containing R.

15. Suppose R is an equivalence relation on a set A, with four equivalence classes.
How many different equivalence relations S on A are there for which R ⊆ S?
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11.3 Equivalence Classes and Partitions
This section collects several properties of equivalence classes.

Our first result proves that [a]= [b] if and only if aRb. This is useful
because it assures us that whenever we are in a situation where [a]= [b],
we also have aRb, and vice versa. Being able to switch back and forth
between these two pieces of information can be helpful in a variety of
situations, and you may find yourself using this result a lot. Be sure to
notice that the proof uses all three properties (reflexive, symmetric and
transitive) of equivalence relations. Notice also that we have to use some
Chapter 8 techniques in dealing with the sets [a] and [b].

Theorem 11.1 Suppose R is an equivalence relation on a set A. Suppose
also that a,b ∈ A. Then [a]= [b] if and only if aRb.

Proof. Suppose [a]= [b]. Note that aRa by the reflexive property of R, so
a ∈ {

x ∈ A : xRa
} = [a] = [b] = {

x ∈ A : xRb
}
. But a belonging to

{
x ∈ A : xRb

}
means aRb. This completes the first part of the if-and-only-if proof.

Conversely, suppose aRb. We need to show [a]= [b]. We will do this by
showing [a]⊆ [b] and [b]⊆ [a].

First we show [a]⊆ [b]. Suppose c ∈ [a]. As c ∈ [a]= {
x ∈ A : xRa

}
, we get

cRa. Now we have cRa and aRb, so cRb because R is transitive. But cRb
implies c ∈ {

x ∈ A : xRb
}= [b]. This demonstrates that c ∈ [a] implies c ∈ [b],

so [a]⊆ [b].
Next we show [b]⊆ [a]. Suppose c ∈ [b]. As c ∈ [b]= {

x ∈ A : xRb
}
, we get

cRb. Remember that we are assuming aRb, so bRa because R is symmetric.
Now we have cRb and bRa, so cRa because R is transitive. But cRa implies
c ∈ {

x ∈ A : xRa
}= [a]. This demonstrates that c ∈ [b] implies c ∈ [a]; hence

[b]⊆ [a].
The previous two paragraphs imply that [a]= [b]. ■

To illustrate Theorem 11.1, recall how we worked out the equivalence
classes of ≡ (mod 3) at the end of Section 11.2. We observed that

[−3]= [9]= {
. . . ,−3,0,3,6,9, . . .

}
.

Note that [−3]= [9] and −3≡ 9 (mod 3), just as Theorem 11.1 predicts. The
theorem assures us that this will work for any equivalence relation. In the
future you may find yourself using the result of Theorem 11.1 often. Over
time it may become natural and familiar; you will use it automatically,
without even thinking of it as a theorem.
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Our next topic addresses the fact that an equivalence relation on a set
A divides A into various equivalence classes. There is a special word for
this kind of situation. We address it now, as you are likely to encounter it
in subsequent mathematics classes.

Definition 11.5 A partition of a set A is a set of non-empty subsets of
A, such that the union of all the subsets equals A, and the intersection of
any two different subsets is ;.

Example 11.13 Let A = {
a,b, c,d

}
. One partition of A is

{{
a,b

}
,
{
c
}
,
{
d
}}
.

This is a set of three subsets
{
a,b

}
,

{
c
}
and

{
d
}
of A. The union of the

three subsets equals A; the intersection of any two subsets is ;.
Other partitions of A are{{

a,b
}
,
{
c,d

}}
,

{{
a, c

}
,
{
b
}
,
{
d
}}

,
{{

a
}
,
{
b
}
,
{
c
}{

d
}}

,
{{

a,b, c,d
}}

,

to name a few. Intuitively, a partition is just a dividing up of A into pieces.

Example 11.14 Consider the equivalence relations in Figure 11.2. Each
of these is a relation on the set A = {−1,1,2,3,4

}
. The equivalence classes

of each relation are listed on the right side of the figure. Observe that,
in each case, the set of equivalence classes forms a partition of A. For
example, the relation R1 yields the partition

{{−1
}
,
{
1
}
,
{
2
}
,
{
3
}
,
{
4
}}

of A.
Likewise the equivalence classes of R2 form the partition

{{−1,1,3
}
,
{
2,4

}}
.

Example 11.15 Recall that we worked out the equivalence classes of the
equivalence relation ≡ (mod 3) on the set Z. These equivalence classes
give the following partition of Z:{{

. . . ,−3,0,3,6,9, . . .
}
,
{
. . . ,−2,1,4,7,10, . . .

}
,
{
. . . ,−1,2,5,8,11, . . .

}}
.

We can write it more compactly as
{
[0], [1], [2]

}
.

Our examples and experience suggest that the equivalence classes of
an equivalence relation on a set form a partition of that set. This is indeed
the case, and we now prove it.

Theorem 11.2 Suppose R is an equivalence relation on a set A. Then
the set

{
[a] : a ∈ A

}
of equivalence classes of R forms a partition of A.

Proof. To show that
{
[a] : a ∈ A

}
is a partition of A we need to show two

things: We need to show that the union of all the sets [a] equals A, and
we need to show that if [a] 6= [b], then [a]∩ [b]=;.
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Notationally, the union of all the sets [a] is ⋃
a∈A[a], so we need to prove⋃

a∈A[a]= A. Suppose x ∈⋃
a∈A[a]. This means x ∈ [a] for some a ∈ A. Since

[a] ⊆ A, it then follows that x ∈ A. Thus ⋃
a∈A[a] ⊆ A. On the other hand,

suppose x ∈ A. As x ∈ [x], we know x ∈ [a] for some a ∈ A (namely a = x).
Therefore x ∈⋃

a∈A[a], and this shows A ⊆⋃
a∈A[a]. Since ⋃

a∈A[a] ⊆ A and
A ⊆⋃

a∈A[a], it follows that ⋃
a∈A[a]= A.

Next we need to show that if [a] 6= [b] then [a]∩ [b] = ;. Let’s use
contrapositive proof. Suppose it’s not the case that [a]∩ [b]=;, so there is
some element c with c ∈ [a]∩[b]. Thus c ∈ [a] and c ∈ [b]. Now, c ∈ [a] means
cRa, and then aRc since R is symmetric. Also c ∈ [b] means cRb. Now
we have aRc and cRb, so aRb (because R is transitive). By Theorem 11.1,
aRb implies [a]= [b]. Thus [a] 6= [b] is not true.

We’ve now shown that the union of all the equivalence classes is A,
and the intersection of two different equivalence classes is ;. Therefore
the set of equivalence classes is a partition of A. ■

Theorem 11.2 says the equivalence classes of any equivalence relation
on a set A form a partition of A. Conversely, any partition of A describes
an equivalence relation R where xR y if and only if x and y belong to the
same set in the partition. (See Exercise 4 for this section, below.) Thus
equivalence relations and partitions are really just two different ways of
looking at the same thing. In your future mathematical studies, you may
find yourself easily switching between these two points of view.

Exercises for Section 11.3

1. List all the partitions of the set A = {
a,b

}
. Compare your answer to the answer

to Exercise 5 of Section 11.2.
2. List all the partitions of the set A = {

a,b, c
}
. Compare your answer to the

answer to Exercise 6 of Section 11.2.
3. Describe the partition of Z resulting from the equivalence relation ≡ (mod 4).
4. Suppose P is a partition of a set A. Define a relation R on A by declaring xR y

if and only if x, y ∈ X for some X ∈ P. Prove R is an equivalence relation on A.
Then prove that P is the set of equivalence classes of R.

5. Consider the partition P = {{
. . . ,−4,−2,0,2,4, . . .

}
,
{
. . . ,−5,−3,−1,1,3,5, . . .

}}
of Z.

Let R be the equivalence relation whose equivalence classes are the two ele-
ments of P. What familiar equivalence relation is R?
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11.4 The Integers Modulo n

Example 11.8 proved that for a given n ∈ N, the relation ≡ (mod n) is
reflexive, symmetric and transitive, so it is an equivalence relation. This
is a particularly significant equivalence relation in mathematics, and in
the present section we deduce some of its properties.

To make matters simpler, let’s pick a concrete n, say n = 5. Let’s begin
by looking at the equivalence classes of the relation ≡ (mod 5). There are
five equivalence classes, as follows:

[0] = {
x ∈Z : x ≡ 0 (mod 5))

} = {
x ∈Z : 5 | (x−0)

} = {
. . . ,−10,−5,0,5,10,15, . . .

}
,

[1] = {
x ∈Z : x ≡ 1 (mod 5))

} = {
x ∈Z : 5 | (x−1)

} = {
. . . , −9,−4,1,6,11,16, . . .

}
,

[2] = {
x ∈Z : x ≡ 2 (mod 5))

} = {
x ∈Z : 5 | (x−2)

} = {
. . . , −8,−3,2,7,12,17, . . .

}
,

[3] = {
x ∈Z : x ≡ 3 (mod 5))

} = {
x ∈Z : 5 | (x−3)

} = {
. . . , −7,−2,3,8,13,18, . . .

}
,

[4] = {
x ∈Z : x ≡ 4 (mod 5))

} = {
x ∈Z : 5 | (x−4)

} = {
. . . , −6,−1,4,9,14,19, . . .

}
.

Notice how these equivalence classes form a partition of the set Z.
We label the five equivalence classes as [0], [1], [2], [3] and [4], but you
know of course that there are other ways to label them. For example,
[0] = [5] = [10] = [15], and so on; and [1] = [6] = [−4], etc. Still, for this
discussion we denote the five classes as [0], [1], [2], [3] and [4].

These five classes form a set, which we shall denote as Z5. Thus

Z5 =
{
[0], [1], [2], [3], [4]

}
is a set of five sets. The interesting thing about Z5 is that even though its
elements are sets (and not numbers), it is possible to add and multiply
them. In fact, we can define the following rules that tell how elements of
Z5 can be added and multiplied.

[a]+ [b] = [a+b]

[a] · [b] = [a ·b ]

For example, [2]+ [1] = [2+1] = [3], and [2] · [2] = [2 ·2] = [4]. We stress
that in doing this we are adding and multiplying sets (more precisely
equivalence classes), not numbers. We added (or multiplied) two elements
of Z5 and obtained another element of Z5.

Here is a trickier example. Observe that [2]+ [3] = [5]. This time we
added elements [2], [3] ∈Z5, and got the element [5] ∈Z5. That was easy,
except where is our answer [5] in the set Z5 = {

[0], [1], [2], [3], [4]
}
? Since

[5]= [0], it is more appropriate to write [2]+ [3]= [0].
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In a similar vein, [2] · [3]= [6] would be written as [2] · [3]= [1] because
[6]= [1]. Test your skill with this by verifying the following addition and
multiplication tables for Z5.

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

· [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]

We call the set Z5 =
{
[0], [1], [2], [3], [4]

}
the integers modulo 5. As our

tables suggest, Z5 is more than just a set: It is a little number system
with its own addition and multiplication. In this way it is like the familiar
set Z which also comes equipped with an addition and a multiplication.

Of course, there is nothing special about the number 5. We can also
define Zn for any natural number n. Here is the definition:

Definition 11.6 Let n ∈N. The equivalence classes of the equivalence
relation ≡ (mod n) are [0], [1], [2], . . . , [n−1]. The integers modulo n is the
set Zn = {

[0], [1], [2], . . . , [n−1]
}
. Elements of Zn can be added by the rule

[a]+ [b]= [a+b] and multiplied by the rule [a] · [b]= [ab].

Given a natural number n, the set Zn is a number system containing n
elements. It has many of the algebraic properties that Z,R and Q possess.
For example, it is probably obvious to you already that elements of Zn obey
the commutative laws [a]+ [b]= [b]+ [a] and [a] · [b]= [b] · [a]. You can also
verify the distributive law [a] · ([b]+ [c])= [a] · [b]+ [a] · [c], as follows:

[a] · ([b]+ [c]) = [a] · [b+ c]

= [a(b+ c)]

= [ab+ac]

= [ab]+ [ac]

= [a] · [b]+ [a] · [c].

The integers modulo n are significant because they more closely fit certain
applications than do other number systems such as Z or R. If you go on to
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take a course in abstract algebra, then you will work extensively with Zn

as well as other, more exotic, number systems. (In such a course you will
also use all of the proof techniques that we have discussed, as well as the
ideas of equivalence relations.)

To close this section we take up an issue that may have bothered
you earlier. It has to do with our definitions of addition [a]+ [b] = [a+ b]
and multiplication [a] · [b] = [ab]. These definitions define addition and
multiplication of equivalence classes in terms of representatives a and b
in the equivalence classes. Since there are many different ways to choose
such representatives, we may well wonder if addition and multiplication
are consistently defined. For example, suppose two people, Alice and Bob,
want to multiply the elements [2] and [3] in Z5. Alice does the calculation
as [2] · [3] = [6] = [1], so her final answer is [1]. Bob does it differently.
Since [2]= [7] and [3]= [8], he works out [2] ·[3] as [7] ·[8]= [56]. Since 56≡ 1
(mod 5), Bob’s answer is [56]= [1], and that agrees with Alice’s answer. Will
their answers always agree or did they just get lucky (with the arithmetic)?

The fact is that no matter how they do the multiplication in Zn, their
answers will agree. To see why, suppose Alice and Bob want to multiply
the elements [a], [b] ∈Zn, and suppose [a]= [a′] and [b]= [b′]. Alice and Bob
do the multiplication as follows:

Alice: [a] · [b]= [ab],
Bob: [a′] · [b′]= [a′b′].

We need to show that their answers agree, that is, we need to show
[ab]= [a′b′]. Since [a]= [a′], we know by Theorem 11.1 that a ≡ a′ (mod n).
Thus n | (a−a′), so a−a′ = nk for some integer k. Likewise, as [b]= [b′], we
know b ≡ b′ (mod n), or n | (b− b′), so b− b′ = n` for some integer `. Thus
we get a = a′+nk and b = b′+n`. Therefore:

ab = (a′+nk)(b′+n`)

= a′b′+a′n`+nkb′+n2k`,

hence ab−a′b′ = n(a′`+kb′+nk`).

This shows n | (ab−a′b′), so ab ≡ a′b′ (mod n), and from that we conclude
[ab]= [a′b′]. Consequently Alice and Bob really do get the same answer, so
we can be assured that the definition of multiplication in Zn is consistent.

Exercise 8 below asks you to show that addition in Zn is similarly
consistent.
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Exercises for Section 11.4

1. Write the addition and multiplication tables for Z2.
2. Write the addition and multiplication tables for Z3.
3. Write the addition and multiplication tables for Z4.
4. Write the addition and multiplication tables for Z6.
5. Suppose [a], [b] ∈Z5 and [a] · [b]= [0]. Is it necessarily true that either [a]= [0]

or [b]= [0]?
6. Suppose [a], [b] ∈Z6 and [a] · [b]= [0]. Is it necessarily true that either [a]= [0]

or [b]= [0]?
7. Do the following calculations in Z9, in each case expressing your answer as [a]

with 0≤ a ≤ 8.
(a) [8]+ [8] (b) [24]+ [11] (c) [21] · [15] (d) [8] · [8]

8. Suppose [a], [b] ∈ Zn, and [a] = [a′] and [b] = [b′]. Alice adds [a] and [b] as
[a]+ [b]= [a+b]. Bob adds them as [a′]+ [b′]= [a′+b′]. Show that their answers
[a+b] and [a′+b′] are the same.

11.5 Relations Between Sets
In the beginning of this chapter, we defined a relation on a set A to
be a subset R ⊆ A× A. This created a framework that could model any
situation in which elements of A are compared to themselves. In this
setting, the statement xR y has elements x and y from A on either side
of the R because R compares elements from A. But there are other
relational symbols that don’t work this way. Consider ∈. The statement
5 ∈Z expresses a relationship between 5 and Z (namely that the element 5
is in the set Z) but 5 and Z are not in any way naturally regarded as both
elements of some set A. To overcome this difficulty, we generalize the idea
of a relation on A to a relation from A to B.
Definition 11.7 A relation from a set A to a set B is a subset R ⊆ A×B.
We often abbreviate the statement (x, y) ∈ R as xR y. The statement (x, y) ∉ R
is abbreviated as x 6R y.
Example 11.16 Suppose A = {

1,2
}
and B =P(A)= {;,

{
1
}
,
{
2
}
,
{
1,2

}}
. Then

R = {
(1,

{
1
}
), (2,

{
2
}
), (1,

{
1,2

}
), (2,

{
1,2

}
)
}⊆ A×B is a relation from A to B. Note

that we have 1R
{
1
}
, 2R

{
2
}
, 1R

{
1,2

}
and 2R

{
1,2

}
. The relation R is the

familiar relation ∈ for the set A, that is, xR X means exactly the same
thing as x ∈ X .
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Diagrams for relations from A to B differ from diagrams for relations
on A. Since there are two sets A and B in a relation from A to B, we have
to draw labeled nodes for each of the two sets. Then we draw arrows from x
to y whenever xR y. The following figure illustrates this for Example 11.16.

;{
1
}{

2
}{

1,2
}

1
2

A B

Figure 11.3. A relation from A to B

The ideas from this chapter show that any relation (whether it is a
familiar one like ≥, ≤, =, |, ∈ or ⊆, or a more exotic one) is really just a
set. Therefore the theory of relations is a part of the theory of sets. In
the next chapter, we will see that this idea touches on another important
mathematical construction, namely functions. We will define a function to
be a special kind of relation from one set to another, and in this context
we will see that any function is really just a set.


