Write a proof for each proposition. Use complete sentences.

1. Proposition: If $a \mid b$ and $c \mid d$, then $a c \mid b d$.
2. Proposition: Suppose A and B are sets. Then $A-(A-B)=A \cap B$.
3. Proposition: The number $\log _{2}(3)$ is irrational.

Hint: Use proof by contradiction and the fact that $\log _{2}(3)>0$.
4. Proposition: There exists a set X such that $X \cap \mathcal{P}(X)$ is not empty.

Hint: What element is in $\mathcal{P}(X)$, no matter what X is?
5. Proposition: If $3 \nmid n$, then $3 \mid\left(n^{2}-1\right)$.

Hint: Divide into cases.
6. Proposition: For all integers $n \geq 1, \sum_{i=1}^{n} 3^{i}=\frac{3^{n+1}-3}{2}$.
7. Proposition: For all integers $n \geq 1, \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}}\left(x \mathrm{e}^{x}\right)=(x+n) \mathrm{e}^{x}$.
8. Proposition: Suppose A and B are sets. If $\mathcal{P}(A) \cup \mathcal{P}(B)=\mathcal{P}(A \cup B)$, then either $A \subseteq B$ or $B \subseteq A$. Hint: You may prove this directly, but proof by contrapositive may be easier.

