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Spearman’s Hypothesis holds that the magnitude of mean White-Black differences on cog-
nitive tests covaries with the extent to which a test is saturated with g. This paper evaluates
Spearman’s Hypothesis by manipulating the g saturation of cognitive composites. Using a
sample of 16,384 people from the General Aptitude Test Battery database, we show that
one can decrease mean racial differences in a g test by altering the g saturation of the meas-
ure. Consistent with Spearman’s Hypothesis, the g saturation of a test is positively and
strongly related to the magnitude of White-Black mean racial differences in test scores.
We demonstrate that the reduction in mean racial differences accomplished by reducing
the g saturation in a measure is obtained at the cost of lower validity and increased predic-
tion errors. We recommend that g tests varying in mean racial differences be examined to
determine if the Spearman’s Hypothesis is a viable explanation for the results.

1. Introduction

wo questions periodically reappear in the personnel

selection literature: (1) what causes one cognitive
ability test to be more predictive of job performance
than another and (2) what causes one cognitive ability
test to have smaller mean racial differences than an-
other. Regarding the first question, scientific evidence
indicates that the validity of a cognitive test is largely a
function of the extent to which the test measures g
(Gottfredson, 2002; Olea & Ree, 1994; Ree, Earles, &
Teachout, 1994; Sackett, Schmitt, Ellingson, & Kabin,
2001; Schmidt, 2002; Thorndike, 1986). Spearman is
credited with identifying a general factor of intelligence
(g) that could be derived from any broad set of cognitive
measures (Spearman, 1904, 1927), and the research
stream began by Spearman is often labeled as the ‘psy-
chometric g’ literature. The second question was di-
rectly addressed by Spearman (1927, p. 379), who noted
that the magnitude of mean White—Black differences
covaried with the extent to which a test was ‘saturated
with g’ This positive relationship between the g satura-
tion of tests and the magnitude of the tests’ White—
Black mean differences became known as ‘Spearman’s
Hypothesis.” Jensen (1985, 1998) reviewed many studies
supporting Spearman’s Hypothesis. Thus, to accept
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Spearman’s Hypothesis is to adopt the position that one
cannot develop a g test that measures g well (i.e., a test
that has a high g saturation) and has low White—Black
mean differences.

Typically, studies concerning Spearman’s Hypothesis
examine intact test composites for the relation between
g saturation and the mean racial differences of the tests
comprising the composite. In this study, we take a dif-
ferent approach. We manipulate a 9-scale test compos-
ite to create multiple measures (composites) that vary
in g saturation. We evaluate Spearman’s Hypothesis by
examining how mean Black—White score differences
covary with g saturation. In addition, we also consider
how differences in g saturation affect criterion-related
validity and prediction errors. Differences across the
composites cannot be attributed to sample differences
because all composites are based on data from the same
sample. Furthermore, because we are manipulating the g
saturation of the composites, we can have greater con-
fidence that the observed effects are due to g saturation
and not other factors. In addition, we use two ap-
proaches to alter the g saturation of the composites to
evaluate whether our results are due to a particular
method. Thus, we offer these analyses as a unique ap-
proach to evaluating Spearman’s Hypothesis and argue
that it represents a unique contribution to the Spear-
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man’s Hypothesis literature. We conclude the paper
with a discussion of the usefulness of Spearman’s Hy-
pothesis in understanding the results of g tests that
appear to have lower than typical Black—White mean
differences.

When evaluating data with respect to Spearman’s Hy-
pothesis and the determination of the g saturation of
tests, there are three classes of issues that should be
considered (Carroll, 1993; Floyd, Shands, Rafael,
Bergeron, & McGrew, 2009; Major, Johnson, &
Bouchard, 2011). The first class of issues concerns
sample characteristics. One issue in this class is the size
of the sample. In this study, the samples were selected
such that each sample had at least 25 Whites and 25
Blacks, and summed across samples, we had data for
16,384 individuals. Thus, we have more than an ad-
equate sample size for the precise estimation of statist-
ics. The second issue concerning samples is whether the
samples are drawn from occupational settings. Our data
were drawn from the General Aptitude Test Battery
(GATB; U.S. Department of Labor, 1970) database, and
all data are from occupational settings. The large
amount of data enhances the likelihood of a represent-
ative set of data. Thus, our results should generalize to
occupational settings.

The second class of issues relates to the tests used in
estimating g. One issue is the diversity of tests (Carroll,
1993; Johnson & Bouchard, 2005; McGrew, 2009; Reeve
& Blacksmith, 2009). A broad array of tests is typically
recommended. Test composites may give too much
weight to crystallized ability because fluid ability tests
tend to be more narrowly defined tasks (e.g., number
series), which may have more unique variance (Ashton
& Lee, 2005; Kvist & Gustafsson, 2008). This can result
in the crystallized components defining more of the
common variance of g than other components (e.g., fluid
intelligence). The nine GATB scales used in this study
are drawn from a diverse set of 12 tests: name compar-
ison, computation, three-dimensional space, vocabulary,
tool matching, arithmetic reason, form matching, mark
making, place, turn, assemble, disassemble. Of these
tests, vocabulary appears to be the sole test that is
clearly identifiable as crystallized. Arithmetic reason ex-
presses problems verbally and may have some crystal-
lized variance. Computation is addition, subtraction,
multiplication, and division of whole numbers. Tool
matching and form matching are perceptual measures.
Name comparison is a speeded perception test. The re-
maining tests assess psychomotor abilities. Thus, the
GATB incorporates a broad range of ability scales. Also
in this class of issues is the number of tests used in
estimating a g factor. Major et al. (2011) reported that a
small number of scales or tests tend to inflate the factor
loadings. Furthermore, factor loadings tend to be less
reliable with few scales or tests. As a result, Major et al.
encouraged the use of at least six to seven indicators
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(i.e., scales or tests) per factor. In our study, we have
nine scales based on 12 separate tests. Thus, our factors
can be well defined and the factor loadings can be well
estimated.

The third class of issues concerns the choice of factor
extraction method. Both Floyd et al. (2009) and Major
et al. (2011) reported that principal components analysis
tends to overestimate general factor loadings relative to
principal factor analysis. Jensen and Weng (1994) also
recommended principal factor analysis. Consistent with
these findings and recommendations, we used principal
factor analysis.

There are two likely scenarios for building a g com-
posite to reduce its g saturation. Both involve altering
the measurement of g so that a test assesses g less well.
First, one can alter the assessment of g by dropping
scales with high g saturation. This approach lowers the g
saturation of a composite by excluding scales with the
best g saturation. Second, one can alter the g saturation
of the composite by adding random or near random
variance to the composite.! This approach lowers the g
saturation by reducing the reliability of the composite. In
this paper, we use both methods in the evaluation of
Spearman’s Hypothesis.

When reducing the number of tests in a composite,
one might expect the reliability of the resulting compos-
ite to be smaller than the reliability of a composite with
a larger number of tests. If the reliability drops as the
number of tests in the composite drops, reliability
decrements may be a cause of the decline in validity and
mean group racial differences. Thus, effects attributed to
the Spearman’s Hypothesis may simply be a result of
increases in measurement error. In this paper, we em-
pirically address the credibility of this argument.

2. Method

2.1. Data source and measures

The GATB is a set of nine cognitive scales that are used
in various employment contexts. The nine scales are: G
— general learning ability, V — verbal aptitude, N — nu-
merical aptitude, S — spatial aptitude, P — form percep-
tion, Q — clerical perception, K — motor coordination, F
— finger dexterity, and M — manual dexterity. From the
U.S. Employment Service, U.S. Department of Labor,
we obtained a data set containing GATB scores and job
performance data. Data were formed into multiple
samples consistent with past research by the U.S. Em-
ployment Service.? In each of these samples, the GATB
was administered and job performance data were col-
lected. We retained all samples that contained at least
25 Whites and 25 Blacks, used an identical supervisory
performance rating form as the criterion, and had
no missing data on any GATB scale or the job
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performance criterion. This screening yielded 101
samples of at least 25 Whites and 25 Blacks with a total
of 16,384 individuals.?

The job performance criterion, labeled ‘Descriptive
Rating Scale,” provided one page of instructions to the
supervisor(s) who completed the ratings, followed by
six rating items with 5-point anchored rating scales. The
six rating items were: quantity of work, quality of work,
accuracy of work, knowledge about the job, the variety
of tasks that the worker can perform efficiently, and an
overall rating of the worker’s job performance.

2.1.1. Sets of g composites

We created two sets of g composites, each constructed
to vary in their g saturation. In the first set, we created
a g composite based on a factor analysis of the nine
GATB scales and used the factor loadings on the first
factor to weight the scales, yielding a measure of g. Spe-
cifically, g was defined as shown in Equation (1):

g =G*.91890 + N*.84574 + V*.79171
+ P*.77352 + Q*.75777 + §*.70169 )
+ K*.53819 + F*.50443 + M*.43157

We note that although the GATB scales measure a
very diverse set of abilities, all scales loaded on the
first factor with more than adequate factor loadings,
with the smallest factor loading being .43157. This g
composite created from all nine GATB scales is the
most g saturated composite in our study. To complete
the first set of g composites, we created eight g com-
posites altered to successively reduce the g saturation
by removing the scale with the highest loading on the
g factor from the previous g composite. Thus, for the
first altered g composite, we used the same formula as
in Equation (1) but did not include the term: G*.91890.
The second altered g composite dropped both the G
and the N terms. The last altered g composite was de-
fined as: M*43157. Thus, each successive g composite
has less g saturation than the previous g composite in
the set.*

The second set of g composites began with the g
composite defined by Equation (1). We then created
10 more g composites that resulted in successively re-
duced g saturation by adding normally distributed ran-
dom variance to the test scores. Thus, the second g
composite in this set had its variance increased by
10%, and this additional variance was from a normally
distributed random variable. We then created addi-
tional g composites by adding normally distributed ran-
dom variance in increments of 10%. Note that the g
composite labeled 100% in our Results section (see
Table 3) has twice the variance of the original g com-
posite. As is the case with the first set of g compos-
ites, each successive g composite in this second set has
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less g saturation than the previous g composites in the
set.

2.1.2. Reliability of composites

The second set of g composites reduces g saturation by
increasing measurement error through the introduction
of random variance into the composites. However, in
the first set of g composites, reliability may decline by
removing scales from each successive composite. We
addressed this by calculating the reliability of each com-
posite. To calculate the reliability of a weighted compos-
ite, one needs to know the reliabilities of each scale.
The GATB reports two samples that include all nine
scales and report reliabilities (U.S. Department of Labor,
1970, Manpower Administration; see tables 15-4 and
15-5; total N=1,159). We calculated the sample-
weighted mean of the two reliabilities for each scale and
used those values in calculating the reliabilities of the
composites. We then calculated the reliability of the
weighted composites using the Feldt and Brennan
(1989) formula as reported in He (2009). We did this
for the composites containing between two and nine
scales. The last ‘composite’ consists of only one scale
(GATB M) and we simply use the reliability of that scale
(.73).

In summary, we created two sets of g composites. In
the first set, g saturation was altered by removing the
most g saturated scales from the previous g composite.
In the second set, g saturation was altered by adding
random variance to the g composites.

2.2. Analysis approach

We estimated the g saturation of each composite by
correlating the composite with the g composite built
from all nine GATB scales. Composites with high corre-
lations with the 9-scale composite have greater g satura-
tion than composites with low correlations with the
9-scale composite. We calculated the criterion-related
validities of each g composite’s score and the standard-
ized mean differences between the Whites and the
Blacks on the g composite’s score. For each g compos-
ite, we estimated regression equations in which the g
composite score is the independent variable, and job
performance is the dependent variable. These regres-
sions used the White and Black data combined, yielding
the common regression lines. We then calculated the
amount of error of prediction by race and expressed it
in standard deviation units of the criterion.

All analyses were conducted twice. In the first set of
analyses, we formed one sample based on all 16,384 in-
dividuals in the data set. In the second set of analyses,
we conducted the analyses separately for each of the
101 individual samples and then calculated the sample-
size-weighted mean of the statistics across samples.
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3. Results

Our first approach to reducing the g saturation of the
scale composites was to successively drop the most g
saturated scale. But, were any of the resulting effects
partially a function of reducing the reliability of the com-
posite by reducing the number of scales in the compos-
ite? A key consideration in evaluating this possibility is
the recognition that the reliability of a weighted com-
posite depends on the intercorrelations of the scales.
Although all the GATB scales have moderate to high g
loadings, the GATB uses a broad bandwidth of scales
that group into three clusters (GVN, PQS, KFM). GVN
is a strong cognitive grouping. PQS is a spatial-
perceptual set of scales; it is still a cognitive composite
in that the scales have good loadings on g (the factor
loadings are .77, .76, and .70), but the scales emphasize
spatial-perceptual ability. KFM is a set of psychomotor
scales. It also has good cognitive loadings (the factor
loadings are .54, .50, .43), but the scales emphasize psy-
chomotor ability.

Table 1 shows the reliabilities of the nine compos-
ites. Note that the reliabilities do not decline in a
monotonic fashion as might be expected by reducing
the number of scales per composite. This non-
monotonic pattern of reliabilities is due to the inter-
correlations of the variables retained in the composite
and the intercorrelations are highest for variables in
the same cluster and lower for variables across clus-
ters. The reliability of the 9-scale composite is .92.
When the G scale is dropped from the composite re-
sulting in the 8-scale composite, the reliability drops to
.91. When the N scale is removed (in addition to the
G scale removed earlier), resulting in the 7-scale com-
posite, the reliability drops to .90. However, when the
V scale is removed (in addition to the G and N scales,
which were removed earlier) resulting in the 6-scale
composite, the reliability returns to .92.

This increase in reliability reflects the changing com-
position of the battery and the intercorrelations of the
remaining scales when the G, V, and N scales are

Table 1. Reliabilities of nine composites

Number of Reliability
scales in the of the
composite Dropped scale(s) composite
9 .92

8 G 91

7 N (and G) .90

6 V (and G, N) 92

5 P (and G, N, V) 90

4 Q(and G, N, V, P) 89

3 S(and G, N, V, P, Q) 90

2 K(@nd G, N, V,P,Q,S) 90

1 F(and G, N, V, P, Q, S, K) 73
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dropped. G, V, N are scales designed to measure G (a
scale of general intelligence), V (verbal aptitude), and N
(numerical aptitude). In the 6-scale composite, G, V, and
N have been dropped; this removes the most g loaded
cluster of the GATB, and leaves the spatial-perceptual
scale cluster (PQS) and psychomotor scale cluster
(KFM). When V is dropped, the resulting 6-scale com-
posite has a higher reliability because the average
intercorrelations (mean correlation: .43) are larger than
the correlations within the 7-scale composite (mean
correlation: .42). The same scenario occurs at the
3-scale composite. At this point, we have dropped
scales P, Q, and S. The reliability increases because the
resulting composite is entirely comprised of psychomo-
tor ability tests, which results in the composite having
larger average intercorrelations (mean correlation: .48)
than in the 4-scale composite (mean correlation: .37).

In brief, the reliability does not meaningfully drop until
the last composite which contains only the GATB scale
M, the least g saturated scale in the GATB. More
importantly, the changes in reliability are not monotonic
and thus cannot explain the monotonic decline in valid-
ity and group differences, or the monotonic increase in
prediction errors shown in Table 2.

Table 2 contains the results of analyses for the g
composites that were altered by successively removing
the scale with the highest loading on the g factor.
Thus, the first row of the results shows the findings
for the g composite score composed of all nine GATB
scales. This composite has the most g saturation. The
second row displays the results of analyses with the g
composite containing eight GATB scales. This second
composite has less g saturation than the composite
based on nine GATB scales (the G scale was dropped).
The last row of the table shows a g variable composed
solely of the M scale of the GATB, and this composite
has the least g saturation. The first column of the table
shows the number of scales in the g composite. The
second column indicates which scale(s) were dropped
from the original 9-scale g composite. The third
column displays the correlation of each resulting g
composite with the 9-scale composite (i.e., the g com-
posite with the highest g saturation). This correlation
is an indicator of the g saturation of each respective
composite.

The fourth column presents the correlation between
each individual g composite score and the job perform-
ance criterion. These correlations were based on all
16,384 individuals being considered as one sample. The
sample-size-weighted mean correlations based on
the 101 individual samples are shown in parentheses.
The same practice of showing the estimates for the
overall sample and the 101 individual samples is fol-
lowed for the remaining columns in the table. Because
the results are nearly identical (see Table?2), we
only discuss the statistics from the 16,384 individuals
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considered as one sample. The fifth column shows the
White—Black standardized mean difference in the g com-
posite. A positive d indicates that Whites scored higher
than Blacks, on average. The last two columns show the
prediction error in criterion standard deviation units
with one column showing the mean prediction errors
for Whites and the other showing the mean prediction
errors for Blacks.

As seen in Table 2, the validities of the g composites
drop from .216 to .106, a reduction of .11 or 51%, as
the g saturation of the composites is successively re-
duced by dropping the highest g saturated scale from
the previous g composite. Accompanying the drop in
validity is a drop in the standardized mean differences
(d) between Whites and Blacks on each g composite.
Specifically, the d is .837 for the most g saturated com-
posite and .251 for the least g saturated composite, a
decrease of .586 or 70%. The drop in g saturation is
accompanied by an increase in prediction errors; pre-
diction errors increase as the g saturation of the com-
posite is reduced. The White prediction errors are
negative, indicating that the common regression line
underpredicts the job performance of Whites, on aver-
age. The Black prediction errors are positive, indicating
that the common regression line overpredicts the job
performance of Blacks, on average. Note that the
overprediction of job performance for Blacks is larger
than the underprediction of job performance for
Whites.

Table 2 displays the results for composites in which
the g saturation was reduced by adding random variance
to the g composites. This random variance reduced the
ratio of true to observed variance and thus reduces re-
liability and thereby also the g saturation. This table has
the same format as Table 2. Note that the first rows of
Tables 2 and 3 show the same results because the first g
composite is the same in both tables (the composite cal-
culated based on Equation 1). As the percentage of ran-
dom variance added to the g composite increases, the
validity drops from .216 to .152, a reduction of .064 or
30%. Consistent with Table 2, as the g composites are
reduced in their g saturation, the validity and the
White—Black mean differences decline, but the predic-
tion errors increase.

A reviewer requested that we address whether the
results in Tables 2 and 3 can reasonably be attributed to
sampling error. First, we note that statistics based on a
sample size of 16,384 have very little random sampling
error. Second, Tables 2 and 3 show monotonic relation-
ships across composites, and random sampling error
would cause random variations in statistics and not
show monotonic relationships. On the other hand, ad-
joining composites (e.g., a 9-scale composite and an
8-scale composite) tend to show small differences. For
example, in Table 2, the validity of the 9-scale composite
is .216 and the validity of the 8-scale composite is .210.
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Table 3. Validity, mean racial differences, and prediction errors as a function of reducing g saturation by adding random variance

% increase in variance

due to adding random Correlation
numbers to the with most Mean White (under) Mean Black (over)
nine-variable g saturated White—Black prediction error prediction error
composite (%) g composite Validity of g dong in SD units in SD units
0 1.00 .216 (.205) .837 (.836) —.055 (-.055) 118 (.117)

10 .95 .205 (.194) .799 (.788) —.061 (-.060) 129 (.128)

20 91 197 (.184) .766 (.747) —.065 (—.064) 139 (.138)

30 .88 189 (.176) 736 (.712) —.069 (—.068) 147 (.145)

40 .85 182 (.168) .709 (.681) —-.072 (-.071) 153 (.152)

50 .82 176 (161) .686 (.654) —.074 (—.074) 159 (157)

60 .79 170 (.156) .664 (.631) —.077 (—.076) 164 (.162)

70 77 165 (.150) .644 (.609) —-.079 (-.076) 169 (.166)

80 75 161 (.146) .626 (.590) —.081 (—.079) 173 (.169)

90 73 156 (.141) .610 (.572) —.083 (—.081) 176 (172)
100 71 152 (.137) .594 (.556) —.084 (-.082) 180 (.175)

Notes: Nine g composites were calculated based on a factor analysis of the nine GATB scales. The g composite based on all nine scales was
iteratively altered by adding increasing amounts of random variance, thus making each successive composite less g saturated than the previous com-
posite. All statistics were calculated in two ways. The first way was to treat the 16,384 observations as one sample. The second yields the results in
parentheses. In this second approach, the data were grouped into 101 samples based on their SATB number from the GATB data. The statistics
were calculated in each of the 101 samples. The sample-size-weighted mean of these statistics yielded the statistics in parentheses.

Table 4. Confidence intervals for validities from Table 1

Scales in Standard Lower Upper
composite Validity error Cl Cl

9 216 .0074 201 231
8 210 .0075 195 225
7 197 .0075 182 212
6 186 .0075 A71 .201
5 187 .0075 172 202
4 165 .0076 150 180
3 136 .0077 A1 151
2 122 .0077 107 137
1 106 .0077 .091 21

One can approach this sampling error question from the
perspective of overlapping confidence intervals.’ Table 4
shows the nine composites, the validity coefficients from
Table 1, the standard error of the validity coefficient,
and the confidence intervals for the validity coefficients.
Given the sample size of 16,384, the validities are estim-
ated with substantial precision. Stated another way,
their sampling error expressed as a standard error is
relatively small, resulting in confidence intervals that are
quite small in range. Given that the sample size is con-
stant, the standard error varies solely as a function of
the magnitude of the correlation, which is used as the
estimate of rho in the standard error calculation. Finally,
we note that the confidence intervals are not perfectly
symmetrical around the validity due to the asymmetry
of the sampling error distribution of correlation coeffi-
cients. With rounding, most of the confidence intervals
appear symmetrical.

We note that the confidence intervals of validities
from adjacent composites overlap, but as one moves to
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composites that differ more in the number of scales in-
cluded in the composite, the confidence intervals do not
overlap. For example, the confidence intervals for the
4-scale composite do not overlap with the confidence
intervals of the composite with seven scales or the com-
posite with two scales. Thus, the monotonic decline in
validities and mean group differences across the nine
composites cannot credibly be attributed to sampling
error.

4. Discussion

Spearman’s Hypothesis is well supported by these re-
sults. Black—White differences are largest in the most g
saturated composites but these composites also have
the largest validity and the smallest prediction errors.
Because Spearman’s Hypothesis has undesirable societal
consequences, psychology has a long history of attempts
to develop alternative g measures that have lower mean
racial differences. These attempts are admirable as they
seek to address the diversity—validity dilemma (De
Corte, Sackett, & Lievens, 2010; De Corte, Sackett, &
Lievens, 2011; Ployhart & Holtz, 2008) as well as general
social and political concerns (Gottfredson, 1997). We
applaud such efforts. However, given the cumulative
evidence in support of Spearman’s Hypothesis (e.g.,
Gottfredson, 1997; Hunt, 2011; Jensen, 1980, 1998;
National Academy of Sciences, 1982; Reeve & Hakel,
2002; Rushton & Jensen, 2005; Sackett, Borneman, &
Connelly, 2008; Sackett et al., 2001), assertions that a
test is both an excellent measure of g and has lower
than typical mean Black—White differences will be re-
ceived with substantial skepticism.
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Recently, two tests have been offered as measures
of g with lower than typical Black—White mean differ-
ences. Fagan (2000) argued that g is best defined as
the ability to process information. Further, he argued
that psychometric g tests depend not solely on pro-
cessing ability but on what one has been taught. Fagan
and Holland (2002, 2007, 2009) reported that when
Whites and Blacks had a similar exposure to the lan-
guage (e.g., words, sayings, similarities, analogies) used
in the test, there were only negligible mean racial dif-
ferences in the processing of the information. We con-
trast the Fagan and Holland research with research on
miniature training and evaluation tests (Harris, 1987),
also called trainability tests (Roth, Buster, & Bobko,
2011). In this line of research, as with the Fagan and
Holland tests, applicants receive training and then are
evaluated on their knowledge of the trained material.
Both Harris (1987) in a set of primary studies and
Roth et al. (2011) in a broader range of studies, which
also incorporated the Harris data, reported that such
measures show high correlations with g and mean ra-
cial differences comparable to those found on g tests.
The discrepancy in these two research streams has not
been resolved.

The second test is the Siena Reasoning Test (Gold-
stein, 2008). The Siena Reasoning Test has been of-
fered as a test of g that shows smaller mean racial
differences than previous measures of g. Yusko,
Goldstein, Oliver, and Hanges (2010) argued that the
Siena Reasoning Test measures cognitive ability and
shows smaller mean racial differences than typical g
tests because it reduces reliance on prior knowledge,
reduces the use of language, and incorporates graphical
stimuli. We contrast this research with a test called
the Davis—Eells Games that also sought to reduce sub-
group differences by limiting verbal content and using
graphical items. The Davis—Eells Games test did not
yield substantially reduced White—Black mean racial dif-
ferences (Jensen, 1980, p. 643). Likewise, tests such as
the Raven’s Progressive Matrices and the Advanced Ra-
ven’s Progressive Matrices (Raven, Raven, & Court,
1998; Raven, Court, & Raven, 1994) do not rely on
prior knowledge or language and their items are
graphical. The Raven’s tests typically show large
White—Black mean differences near a full standard de-
viation in magnitude. One might infer that the explana-
tions offered by Siena Reasoning Test researchers for
why that test purportedly yields smaller mean differ-
ences are inconsistent with cumulative research in
intelligence.

Can the results of these newer g tests be better un-
derstood in the context of Spearman’s Hypothesis! To
our knowledge, the Fagan and Holland tests have not
been evaluated with respect to Spearman’s Hypothesis
nor do the studies provide sufficient data for such
an evaluation. However, Scherbaum, Hanges, Yusko,
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Goldstein, and Ryan (2012) presented data related to
the Siena Reasoning Test and more traditional g meas-
ures that could be analyzed in the context of the
Spearman’s Hypothesis. They reported results from
two studies. In our analysis of their results, the
correlation between the g saturation of each test, de-
fined as factor loadings, and mean Black—White differ-
ences was .994 for their first study and .620 for the
second study. When g saturation was defined as the
correlation of the test with the most g loaded com-
posite, the correlation between g saturation of each
test and the mean Black-White difference was .996 for
the first study and .536 for the second study. Thus, the
data offered by scholars associated with the Siena Rea-
soning Test are largely consistent with the inference
that the Spearman’s hypothesis is a plausible explana-
tion of the Siena Reasoning Test findings. Specifically,
the results are consistent with the inference that the
reported lower mean racial differences in the Siena
Reasoning Test are due to its lower g saturation rela-
tive to other g tests. If this inference is correct, one
could also infer, consistent with the findings of our
study, that the apparent lower g saturation of the
Siena Reasoning Test would be associated with lower
validity and larger prediction errors.

We offer several important caveats to these infer-
ences due to limitations of the Scherbaum et al’s
(2012) study. The results offered by Scherbaum et al.
are limited by the small number of tests used, which
may distort the factor loadings (Major et al,, 2011) and
may misestimate correlations between g saturation and
mean Black—White differences, possibly substantially,
due to sampling error. Furthermore, the studies used
college students as participants and thus there was
likely range restriction on all the cognitive measures
used. The study is also limited in that it does not ex-
amine validity and prediction errors that may be asso-
ciated with the lower g saturation. An additional
limitation is the relatively small size of each of the
Scherbaum et al.s samples. Finally, we note that any
set of data permits varying inferences and that parties
may have different perspectives on the meaning and
import of results.

4.1. Implications

Our findings have implications for US federal employ-
ment regulations, which mandate that if two selection
procedures have the same validity, one should use the
selection procedure with the lower mean racial differ-
ences. Our large sample results suggest that one would
not find two g tests with equal validity where one has
substantially lower mean racial differences. Thus, barring
large sample credible research to the contrary, there is
unlikely a situation in which there is a legal requirement
to use a g test with lower mean racial differences. Em-
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ployers could of course use a g test with lower mean ra-
cial differences and its use will result in lower validity
and greater prediction errors.

The ease with which one can alter the g saturation of
a test limits the need to purchase commercially available
tests with low g saturation. One can simply take a highly
g saturated test and damage (i.e., reduce) its g satura-
tion. This could be done by removing the most g sat-
urated components of the test, or one could build a test
using less g saturated scales. For example, one can build
less g saturated measures by considering Carroll’s
(1993) widely accepted Three Stratum theory of intelli-
gence (Deary, 2012). Carroll’s (1993, p. 627) figure 15.1
graphically displays the g saturation of various cognitive
abilities such that those most related to g are on the left
of the graph and those least related to g are on the right
of the graph. Thus, a g measure drawing on abilities to
the right of the graph (e.g., processing speed, retrieval,
perception) can be expected to have lower g saturation
than a g measure drawing on abilities from the left
side of the graph (e.g., fluid intelligence and crystallized
intelligence). For example, Barrett, Carobine, and
Doverspike (1999) found smaller mean racial differences
for a short-term memory test (d=.39), a less g sat-
urated test, than a reading comprehension test (d =.80),
a more g saturated test. One can also damage the g
saturation of a test by conducting a factor analysis of g
items and then removing the items with the highest
loading on the g factor. In addition, one can damage the
g saturation of a test by removing the items with the
largest mean racial differences. Finally, one could simply
add random variance to a g test to damage its g satura-
tion. Unfortunately, any approach that reduces the g
saturation of the test may inevitably reduce validity and
increase prediction errors.

We strongly support calls for the development of
strategies for achieving diversity without sacrificing va-
lidity. Sackett et al. (2001) described and evaluated sev-
eral approaches to achieve this and that, in the interest
of equitable treatment across all demographic groups
and organizational functioning, any proposed strategy
should not sacrifice validity in the interest of reducing
subgroup differences (see also, e.g., Sackett et al., 2008;
Schmidt, 2002). As Schmidt and Hunter (1998) have
shown, a combination of cognitive ability and personality
tests, such as conscientiousness or integrity tests, in-
creases the predictive validity of the test composite, on
average. Furthermore, McDaniel, Psotka, Legree, Yost,
and Weekley (2011) illustrated how mean racial differ-
ences on situational judgment tests can be reduced con-
siderably without sacrificing validity. In our view, more
research in these areas could be of great benefit be-
cause a combination of g and personality or situational
judgment tests can reduce mean racial differences, on
average (Ployhart & Holtz, 2008; Viswesvaran & Ones,
2002). Several other strategies are possible as well (e.g.,
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Sackett et al., 2001, 2008; Schmidt, 2002), and we sup-
port research in these areas.

Notes

1. This second approach is similar to what is accomplished
by adding a measure with low g saturation and low validity
(e.g., a resume review) to a selection composite contain-
ing g.

2. Samples in the GATB database are identified by the vari-
able SATBNO, where SATB is an acronym for ‘Special Ap-
titude Test Battery’ and NO presumably stands for
number.

3. In a version of the paper presented at the SIOP conven-
tion, McDaniel and Kepes (2012) reported the sample size
as 22,728. This was in error. That sample size (N =22,728)
reflects the sample before screening samples to have at
least 25 Whites and 25 Blacks.

4. Removing any scale from Equation (1) reduces the g sat-
uration of the resulting composite. By removing the high-
est g loaded scale from the g factor expressed in Equation
(1) from the previous g composite, we are producing the
largest possible decline in g saturation between each g
composite. We note that we could have dropped the g
saturation of the successive g composites by dropping the
least g saturated scale from the previous g composite.
However, that would have reduced g saturation in succes-
sive composites much less effectively. For example, the
last remaining g composite would have been consisted of
the GATB G scale which has a correlation of .89 with the
most g saturated composite (the 9-scale g composite). As
seen in Table 2, removing the highest g loaded scale re-
sults in a set of measures with substantial variability in g
saturation.

5. The confidence intervals we calculated are correct but
conclusions concerning statistical significance of the differ-
ence between two correlations are approximate due to
two issues. First, any use of confidence intervals, even
in independent samples, underestimates the statistical
significance of the difference between the correlations be-
cause the statistical difference test relies on the standard
error of the difference and not the standard errors of the
two confidence intervals. Second, our correlations are
dependent because they are based on the same sample.
The standard error of the difference for dependent corre-
lations is smaller than the standard error for independent
correlations (i.e., for a given N, the same magnitude differ-
ence between two correlation coefficients can be statistic-
ally significant for dependent correlations but not for inde-
pendent correlations). For both of these reasons, the cor-
relations with overlapping confidence intervals can still be
statistically significantly different.
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