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1 Introduction

Systems of difference equations that possess thresholds and discontinuities are
quite commonly encountered in scientific models in general, and models in the
social sciences in particular; see, e.g., [1-4] and the references therein. A few
specific examples appear below. In spite of this, there are few mathematical
tools that are broadly applicable to these systems. In this note, we consider
briefly first a general classification of threshold models as polymodal systems,
and then consider the concept of ejector eycles that pertains to such sys-
tems. These cycles contain global information about the system as each goes
through its mode switching sequence. We illustrate this behavior by analyzing
equations from a model of ground combat.

2 DPolymodal systems
Defintion 1 Let D C R™ be a nonemply set, and let F € C(D,R™). A point
Z € D is an ejection point of F if F(Z) ¢ D. The set E of all ejection points

of F in I} is the ejector of D relative to F; i.e.,

E={zeD:F(z) ¢ D}.
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Defintion 2 A polymodal system in R™ with & modes is a function-set
collection

{(Fi,Dy): i=1,...,k}, k>2
where for each i all of the following are true:

{a) Di CR™ is nonempty and disjoint from D; for j #i;
(t) F; € C(D:, D) where D=\J§_, Dj;
{c) D; conlains a nonemptly ejector E; relative to F;.

Each pair (F;, D;} is a mode of the system. We also define the usually,
though not necessarily, discontinuous join of the maps F; as

k
FéZXDfFiiD—'ﬁ,

i=1

where xg is the characteristic function of the set §, i.e., xs{z) =1ifz e §
and x(z)=0ifz ¢ S.

Next, we give some examples of polymodal systems from the social sci-
ences. For additional examples, and a more detailed discussion of polymodal
systems, see [6].

Examples 1 (Addiction, duopoly, arms race) G. Feichtinger proposes two
sets of equations in [4] (and the references given therein) that involve thresh-
olds {and are thus polymodal). The first set:

Tnpl = Qg+ bX{:..)yu}
Un+tl = Unt+clTn—Un)

models “habit formation” in use of addictive substances, (e.g., tobacco, al-
cohol, drugs) where =, is the habit’s (e.g., smoking) consumption capital in
period n and y, is the “threshold in the habit stock” so that consumption
takes place only if x, exceeds y,. Also, 0 < a < 1, b,c > 0. It is easy to
see that this is a bimodal system with D; and D; the opposite sides of the
diagonal y = z.

The second set of equations model dynamic interaction in a simple duopoly
with “asymmetries.” Il z, and y, denote the sizes (as measured by sales or
market shares) of the two firms in the duopoly in period n, then

Tper = {l—a)zn+ BX{zn>yn}
Yop1 = (1-Bzn, + bX{:r..>y..}

where o, 8 &€ (0,1) and a,b > 0. These equations may also be used as a
nonlinear extension of Richardson-type model of arms race.
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Example 2 (A model of ground combat) J. Epstein [3] proposes a simple
deterministic model in order to illustrate the role of a defender’s withdrawal
as a feedback mechanism that can substantially affect the outcome of combat.
A special case of this model involves the following equations:

1

Tnpl = En"’z(ﬂ—mn)[a_‘”r&(l_yn)] 1)
1-—

Ynp1 = {yn+ 1_2:;‘[%(1-yn)-d]}xmu—y,.)zd}

These equations are taken from [5] where the ground-combat version of Ep-
stein’s model is treated in a rigorous way. There are two combatants, an “at-
tacker” and a “defender”. The latter will withdraw if its attrition level exceeds
a prescribed level (losses measured in terms of standard military “scores”).
The variables and constants have the following meanings:

a: attacker's attrition rate threshold, a € (0,1)

d: defender’s attrition rate threshold, 4 € (0,1)

yn: defender’s withdrawal rate in period (e.g., day) n
T,: attacker’s prosecution rate of combat in period n
Zn{l — y,}: defender’s attrition rate

Also, assumed are the initial value restrictions: zp > 0, 39 = 0. Equations (1)
describe a threshold model, which can be expressed as a bimodal system:

D, = {($1y) € [01 00)2 : 95(1 - y) = d}

Dy = {(z,y)€[0,00)% : 2(1l —y) < d}
Fi(z,y) = {f(:r:.y),g(:r, y)]: (Iv y) €D
Bz,y) = [flz,9)0], (z,v) € D2

where
fl@,y) =2+ (a~z)la—z(1-y)/e
g(z,¥) =y +{1 - y}=z(1 —y) — d|/(1 - d).

Sets Dy and D, represent the regions in [0,00)? that lie, respectively, below
and above the curve y =1 — d/=.

Examples 3 (One dimensional, multi-regime economic systems) Economic
models often involve thresholds that range from physical constraints (since
negative values are not permissible either for functions or for variables) to
different “regimes” that a system can exists in. Piecewise linear equations
provide the simplest examples of these types of systems. Several polymodal
models are discussed in [2] together with a discussion of these models as
“multiple phase systems.” In all the polymodal systems in [2] the join map
Z:;l xpiF; is continuous (though not necessarily smooth). More economic
examples (too many to list specifically) appear in other sources, e.g., [1].
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3 Ejector cycles and an application

Each ejector E; by itsell is anti-invariant, where points of D; move out by the
action of F. In some cases, a collection of two or more ejectors can form an
ejector chain that leads trajectories through the sets ;. When such a chain
is closed, trajectories return to the ejector from which they started, and the
initial ejector will contain an invariant subset under the action of several of
the F; composed with each other.

Defintion 3 Let (F;,D;), i =1,...,k, k > 2 be a polymodal systemn with
k components. Let 2 <1 < k and assume that E;,,... E;, are ejectors in
D;,, ..., Dy respectively. Then the collection £ = {E;,,...,E;} is an ejector
cycle of length | if for each j = 1,...,1 there is ¢ nonempty subset E;-'J C E;
such that

F,(E},) C B,

41t
We call the continuous mapping

1<j<i-1, F(E,)C Ej.

“béF}IO---OEl :E::l _'E':l
a cycle map of the polymodal system corresponding to the ejector cycle £,

Note that a cycle map is a standard continuous mapping on an invariant
region, namely E . As such, the standard theory of continuous maps applies
to 1 and the various properties of ¢ provide information on the behavior of
the polymodal system. For example, il 1 has a cycle of length [, then thereis a
cycle of length ki in the polymodal system. Similarly, an aperiodic trajectory
of ¢ gives rise to an aperiodic trajectory in the system. It is therefore of great
interest to identify ejector cycles, whenever they exist,

It is not difficult to give specific examples of polymodal systems in dimen-
sions 1 and 2 that possess ejector cycles and exhibit complex behavior. Here,
however, we study the system described by equations (1) above. Our aim is
to show that for various ranges of parameter values, there are ejector cycles
whose cycle maps are topologically conjugate to maps of the interval. This
fact is then used to draw conclusions about the behavior of equations (1). We
begin with two Jemnmas whose proofs are given in [5].

Lemuma 1 Let £ be the largest real root of the cubic polynomial
C(t) = —{1 — )(t* — at + a®) + ad(1 - d).

Then € < 1. If a > 1/2, then C 1is strictly increasing and £ is its only real
rool. Further,£ €{d,a)if a>d>1/2and £ € (1—d,a) if 1—-a<d<1/2.

Lemma 2 Let d < a and consider the quintic polynomial

2 _ (12
Q) = a+t(1 — )t - a)‘aT“‘_*;)-, >0,
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{(2) Q has a unigue real root ¢, and ¢ € (1,1 + a); in fect, there is € > 0
such that ¢} is strictly decreasing on the interval (1 — ¢,00), and Q maps the
interval {1,¢| homeomorphically onto [0,a];

{b) Assume that d < a. Then all fized points of @ that exceed d are in the
interval [a,1). If a > 1/2, then a is the only fized point of Q that is larger
than d. On the other hand, if a < 1/2 and

1
>1——
d>1 P (2)

then Q has a fized point in (n,37) end another in (§%,1), where

ﬁi_lzlz\/l—m(l—d)
= 5 .

Theorem 1 (a) Let 1 ~a <d < 1/2 and let £ € (1 —d,a) be the unique
zero of C(t) in Lemma 1. If {(Tn,yn)} ig a solution of {1) with yo =0 and
zo € (£,a] then {z,} increases monotonically to a, but for all n,

mzn-—d
1-d

van =10, Yn41 =

In particuler, the trajectory {(zn,yn)} converges to the 2-cyele

I' = {(a,0), (2, ¥0)}

where Yoo = (a — d}/(1 — d).
(b) Let @ > d 2 1/2, and let £ € (d,a) be the unigue zero of C(t) in
Lemma 1. Then the same behavior as in Part (a) is obtained.

Proof. (a) We first show that system (1) has an ejector cycle. For = > £,

1'{1(:1:,0) = FhokF (:C, 0)
Fa(z + (a — 2)*/a, (z = d)/(1 - d))
= (Q(z),0)

where Q is defined in Lemma 2. The action of F, is well defined because if
Z; and #; denote the two coordinates of Fy(x, 0} above, then £,(1 — ;) < d
il and only if C{x) > 0. This last inequality is true by Lemma 1 if z > €.
Further, if z € (€, a], then

o~ Q)= 204z ca-s,

so that
Q) > 1 > = (3)
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Since Q(a) = a, it follows that Q(I) € I where I = (&, a]. Hence, ¢ is the cycle
map of an ejector cycle with domain E{ = I x {0}, and ¢ is topologically iso-
morphic to @ on I. In addition, the inequalities (3) imply that {z,} increases
to a if g € (£,a] {the even terms are zz, = Q™(zp) and the odd terms are
given by xon41 = Z1(z9,)). Also, {y.} behaves as claimed, since y2,, = 0 (be-
ing the second coordinate of Fyo Fi{za,-2,0)) and yan4y = (z2, — 2)/{1 —d),
which converges to yeo.
{(b) This is done in essentially the same way as (a}). ®

Remark The image Fy(I,0} of I is the locus of all odd terms (x2n41, Y2n+1)-
These are the coordinates of Fi(x2,,0), ie.,

Tonel = Ton + (@ — 220)2 /8,  Yon41 = (20 — d)/(1 - d).

Eliminating 2, from these equations shows that Fy{I,0) is a connected seg-
ment of the parabola

z=ly) = d+ (1= djy+ zla—d = (1 - D). (@)

Theorem 2 below looks at the situation where xy > a. Again, we find an
ejector cycle, but the dynamics are not as simple as in Theorem 1.

Theorem 2 Assume that one of the following conditions hold:
a>d>1/2;
(iil—-a<d<1/2.
Then every trajectory with zp € (a,1) and yg = 0 converges to the cycle I' of
Theorem 1 from the right, with {y,} having the same behavior as in Theorem

1(a) but now {z,} converges non-monotonically to a from the right in the
manner Log4n < Tog < Topyy for every n.

Proof. As in the proof of Theorem 1, we have

¥(z,0) = Fp(Z), i) = (Q(x),0). (5)

If (i) or (ii) hold, and £ is as defined in Lemma 1, then £ < aso %)(1~#) > d,
and the action of F; is well defined for = > a. Also by Lemma 2, Q has no
fixed points (except a). It follows that if z € (e,1) and y = 0, then &, > =.
Further,

0<Q’(a)=i:2<1

so that a < Q{z) < = < £, for x € {a,1). These inequalities and (5) establish
the pattern described in the statement of the theorem. W

As in the previous case, it is evident that the odd terms (Z2n41, Yon+1)
fall on a connected segment of the parabola (4) and the even terms (zz,, ¥2,)
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fall in the interval I = (a,1) on the z-axis. We quote one more result that
gives sufficient conditions for the occurrence of chaotic behavior. The proof is
self-evident, since v is topologically conjugate to @ on a suitable interval I.

Theorem 3 Assume that the polynomial 3 has a fixed point in the interval
{a,1), and that p is the lorger fized point with p > £. If the interval (€,1)
contains a subintervel I with pe QI C I, and if zo € I, yo = 0, then for
n > 1, the followtng are true:

(a) If p is attracting (e.g., |Q'(p)| < 1), then {(ZTn,yn)} converges ta the

2-cycle )
(p—a) p—d
¥ = 0 — —]:.
{0, (r+ 2L, 22

(b) If p is unstable (e.g., Q' (p) <—1 ), and Q has a limit cycle {cy,...,cx}
in I, then {{(zn,yn)} converges to a 2k -cycle whose even-indered terms are
(C,',O), = 1,...,k.

{c) If @ is chaotic on the invariant interval I (e.g., it a has snap-back
repeller in I) then F is chaotic and has periodic points of all possible even
periods. The even indered terms are in I x {0} and the odd indezed terms are
on the parabola (4).

To see that the last case is in fact possible, consider a special case: a =
0.465, d = 0.455. In this case, direct computation shows that Q has a snap-
back repeller in J = [0.73,0.95] and chaos obtains. See [6] for more details.
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