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In this paper we define a new class of algebras of bounded, continuous, 
complex-valued functions on a semitopological semigroup S.  Each C*-algebra of 
left locally con~inuou, f~nc~ions in this class generalizes the familiar C*-algebra 
LUC(S)  of all left uniformly continuous functions on S (Section 1). One of the 
main goals of this paper is to establish that the inclusion relationships among 
these algebras of left locally continuous functions can be useful in the study and 
classification of the semigroup S. Thus we show in Section 2 that the class 
of all C*-algebras of left locally continuous functions on S forms a semilattice 
with respect to set inclusion. The equivalences that give rise to this semilattice 
result, among other things, in partitions of S and of 7 '(S) into classes that  are 
characterized by certain local continuity properties. In fact, whenever translation 
invariant, each C*-algebra of left locally continuous functions gives rise to a 
semigroup compactification enjoying a "local joint continuity property" (a local 
version of the analogous property of the LUC-compactification as in 1.5 and 1.6 
below). 

In order to present a concrete case, in Section 3 we discuss in detail the 
structure of the semilattice of C*-algebras of left locally continuous functions 
for the direct product of a family {S~ : a 6 I} consisting of groups and 
groups with zeros (we refer to such direct products as fMl lattices of groups). We 
show that  in this case the aforementioned semilattice may be identified with the 
Boolean lattice of all subsets of I (or I less a singleton) via a lattice isomorphism 
that  is defined with the aid of the idempotents in the direct product  (3.10). 
Moreover, the index set I and the idempotents can be used to obtain a rather 
simple characterization of each member of the lattice in terms of the C*-algebra 
of all bounded, continuous functions on an appropriate principal ideal in the 
direct product  (3.6, 3.15). The validity of these conclusions requires no further 
restrictions on the full lattice of groups than the (sufficient) conditions needed 
to make Lawson's Joint Continuity Theorem applieable (e.g., local compactness 
or complete metrizablility; see 3.4 and 3.6 below). 

0. Preliminary concepts 

All the topologies in this paper will be assumed Hausdorff. Also, S will 
denote a semitopological semigroup unless otherwise noted. This means that S is 
an algebraic semigroup endowed with a topology relative to which multiplication 
(semigroup operation) is separately continuous. If the semigroup multiplication 
(i.e., the mapping (s,t) ~-~ st : S x  S H S )  is continuous, then S is called a 
topological semigroup. Many (though not all) of the semigroups discussed in this 
paper are actually topological. Currently, there are a number  of good treatments 
of semitopological semigroups available and each adopts a somewhat different 
point of view. The presentation in [1], for example, contains all the preliminary 
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mater ia l  required for this paper  and we adopt  essentially the same terminology. 
In this section we highlight those concepts tha t  are used here. 

As ment ioned before, C(S) denotes the  set of all bounded,  continuous, 
complex-valued functions on S;  it  is a t rans la t ion  invariant  C*-algebra (with 
complex conjugat ion as involution) containing all the constant  functions on S 
(an a lgebra  F of functions on S is translation invariant if RsF U LsF C F 
for all s e S ,  where R, f ( t )  = f( ts)  and n,.f(t) = f(st) ,  t G S, f G F). 
Two well-known C*-subalgebras of C(S) will be of special interest  to us here: 
The  a lgebra  LUG(S) of all left uniformly continuous functions and the a lgebra  
LMG(S)  of all left multiplicatively continuous functions [1]. Of interest  is also 
the C*-algebra WAP(S)  of all weakly almost periodic functions on S .  For every 
semitopological  semigroup S ,  all three algebras are t rans la t ion  invariant  and we 
have WAP(S)  (3 LUG(S) C LMC(S)  [1]. 

And now for a summary  of some of the main  ideas concerning semigroup 
compactif icat ions.  A compactification of a semitopological  semigroup S is a 
pair  ( r  where X is a compact ,  Hausdorff, r ight topological  semigroup 
(x ~-~ xy : X ~-~ X is continuous for each y G X )  and r : S ~-~ X is a 
continuous homomorphism such tha t  r  = X and the mappings  x ~-+ r  : 
X ~-~ X ,  s E S ,  are continuous. A continuous function 7r from a compactif icat ion 
(r X )  of S to a compactif icat ion ( r  Y) of S is said to be a homomorphism if 
7r o r = r  Note tha t  such a mapping  preserves mult ipl icat ion and is surjective. 
A compact i f ieat ion ( r  of S which possesses a certain p roper ty  P (such as 
tha t  of being a topological  group) is a universal compactif icat ion with respect  
to P if for every eompactif icat ion ( r  of S which has P ,  there exists a 
homomorphism from (r X )  onto (~,  Y). 

Let (r X )  be a compactif icat ion of S and let r  C(X) H C(S) denote 
the dual mapping f H f o r  Then the C*-subalgebra F ( S )  := r  
is t rans la t ion  invariant  and left m-introverted; i.e., TuF(S ) C F(S) for all # 
in the  spec t rum of F(S),  where T u is defined by Tuf(s ) = #(Lsf) ,  f G F(S),  
s E S .  Conversely, let F(S) be a t rans la t ion  invariant and left m-introverted C*- 
subalgebra  of C(S) containing the constant  functions (such an algebra is called 
m-admissible). Let X denote the spec t rum of F(S) with the weak* topology, and 
let r : S ~ X be the evaluation mapping defined by r  = f(s) ,  f E F(S),  
s E S .  Then ( r  is a compactif icat ion of S such tha t  F(S) = r  
where mul t ip l ica t ion on X is defined by xy = x o Ty. (r X)  is called the 
canonical F(S)-compactification of S .  

The  algebras WAP(S) ,  LUG(S), LMG(S)  are m-admissible  [1]. The  
WAP(S)-compactification is the universal semitopological  semigroup compact-  
ification of S .  The  LUC(S)-compactification ( r  is universal with respect 
to the  p roper ty  tha t  the  mapping  ( s ,x )  H r  : 9 x X ~-~ X is continu- 
ous. Finally,  the  LMC(S)-compaetifieation is the umversal  (r ight  topological)  
semigroup compact i f icat ion of S (i.e., LMC(S)  is the largest m-admissible  sub- 
a lgebra  of C(S)).  

1. L e f t  l o c a l l y  c o n t i n u o u s  f u n c t i o n s  

In this section we define the C*-algebras of lcft locally continuous func- 
tions on semitopological  semigroups and discuss the basic proper t ies  of each such 
algebra.  We will also in t roduce the semigroup compactif icat ions associated with 
these C*-algebras.  

D e f i n i t i o n  1.1.  A function f e LMC(S)  is said to be left locally continuous 
at a E S if the  mapping  

s ~-* n , f :  S ~-* C(S) (1) 
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is continuous at  the point  a relative to the uniform topology on C(S). Thus f 
being left locally continuous is equivalent to the norm quant i ty  

IlL~,f - Lafll = sup If(s,x) - f(ax)I 
xEs 

approaching zero for every net {so} in S tha t  converges to a. The set of all 
functions of this type is denoted by LLC(S, a). Further ,  if A is a non-empty 
subset  of S, we define 

L L C ( S , A ) = A { L L C ( S , a ) :  aE A}. 

It  is clear tha t  LUC(S) = LLC(S,S)  C LLC(S,a) for every a E S ,  and if 
A C B ,  then LLC(S, B) c LLC(S, A). It  is thus reasonable (and helpful) to 
define 

LLC(S, O) = LMC(S)  

where O represents the empty  set. Notice that  for f to be in LLC(S,A),  it is 
not sufficient tha t  the  restriction of the mapping in (1) to A be norm continuous 
(an example of the restr ic t ion case appears  in [6] in connection with the  topology 
of uniform convergence on compact  subsets of S) .  

The set of all right locally continuous functions at a, which we denote 
RLC(S, a), is defined similarly via the right t rans la t ion  opera tor  and the algebra 
RMC(S)  (RMC(S)  and R u e ( s )  are the "right analogs" of LMC(S)  and 
LUC(S),  respectively; they are defined in, e.g., [1]) The  extensions to subsets 
of S are  likewise defined and, of course, RLC(S, S) = R u e ( s ) ,  RLC(S, 0)  = 
RMC(S) .  The following lemma lists some of the e lementary  propert ies  of the 
algebras of left locally continuous functions tha t  are used in this paper  (the right 
locally continuous analogs are  similar). The  rout ine proof  is omit ted.  

L e m m a  1.2. 
5) LLC(S, UT) = f l{LLC(S,A)  : A e 7 ) }  for every non-empty family 7 

of subsets of S. 
(it) Lt(LLC(S, tA)) C LLC(S, A), 

Lt(LLC(S,A)) c LLC(S , t - IA) ,  for every t E S, where 

t - I A =  { ~ E S :  t~EA}.  

(iii) For every subset A C S, LLC(S,A) is a right translation invariant C*- 
subaIgebr~ of C( S). 
The next lemma is impor tan t  with regard to the existence of semigroup 

compactifications.  

L e m m a  1.3. For each A C S, LLC(S~A) is m-admissible if and only if it is 
left translation invariant. 
P r o o f .  We need only show tha t  if LLC(S, A) is left t r ans la t ioa  invariant,  
then it is left m-introverted.  For each # in the  spec t rum of LLC(S, A) there is 
#'  in the  spec t rum of LMC(S)  such that  ] A ' I L L c ( S , A  ) = ]A. Since LMC(S)  is 
left m-introver ted and for each s E S and f E LLC(S, A) 

T j ( s )  = #(Lsf) = #'(Lsf)  = T , , f ( s ) ,  

we conclude tha t  T~f E LMC(S) .  Also since for each a E A and f e 
LLC(S,A) ,  

I[n~T~f - n~T~f[I -- s u p l # ( L ~ f )  - #(Lair) I ~_ HLsf - L~f]l , 
xEs 

it follows tha t  T~f is left locally continuous at each point  of A. �9 
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E x a m p l e s  1.4.  By 1.2 and 1.3, for every left ideal L in S,  LLC(S,L)  is 
m-admissible,  and  if S is abelian,  then LLC(S, A) is m-admissible  for every 
A C S .  On the other hand,  if S - -  L x Q ,  where L = {al,a2} is a discrete 
left zero semigroup (xy --= x for each x,y  E L)  and Q is the group of addi t ive 
rat ionals  under  the  usual  topology, then LLC(S, (a l ,  0)) is not left t rans la t ion  
invariant  (hence not m-admissible) .  To see this, note that  LUC(Q) ~ LMC(Q) 
[5]. Let  f E LMC(Q) \LUC(Q) .  Define the function g E C(S) as 

g(al ,y)=O,  g (az , y )= f ( y ) ,  yE  q.  
Using a double- l imit  cr i ter ion it can be shown that  g E LMC(S) ,  after which 
direct calculat ion shows tha t  in fact g E LLC(S, (al, O))\LLC(S, (a2,0))  (details 
may  be found in [8]). Now the requirement  tha t  L(a,q)g E LLC(S, (a l ,  0)) for 
every (a, q) E S is equivalent to the quant i ty  

ItL(s,t)(n(~,q)g) - n(~,o)(L(a,q)g)l[ --- ItL(a,~+t)g - L(~,q)gl[ (2) 

approaching zero as (s,t) --4 (al,0). Let {qn} be any sequence in Q tha t  
converges to zero, and let a = a2,q = 0 in (2). Then IIL(a~,q.)g - L(a2,0)gi] --~ 0 
as n --~ oo if and  only if g E LLC(S, (a2,0)) ,  and it was shown above tha t  this 
is not  the  case. 

D e f i n i t i o n  1.5.  A semigroup compactif icat ion ( r  of S is said to have 
the local joint continuity property with respect to a non-empty  subset  A C S 
(or l jcA) if the map  

(~, z )  ~ r  : s • x ~ x 

is continuous at  every point  of A • X .  

The  proof  of the first par t  of the  following theorem for the LUC case is 
given in [1]. W i t h  the aid of 1.2 and 1.3, the general izat ion to the LLC case is 
s t raight-forward,  as is the  proof of the second par t  of the theorem (or see [8]). 
The  theorem shows that  the LLC-compact i f ica t ions  are the local versions of the  
LUC-compactification in the obvious way. 

T h e o r e m  1.6. 
(i) Let A be a non-empty subset of S such that LLC(S, A) is left transla- 

tion invariant. Then the canonical LLC(S,A)-compactification of S is 
universal with respect to the ljcA property. 

(it) The ljc property is invariant under compactification homomorphiams; 
i.e., if A is a non-empty subset of S such that LLC(S,A)  is left trans- 
lation invariant, and if ( r  is a compactification having the ljcA 
property, then every factor (homomorphie image) of it also has the ljcA 
property. �9 

The next  corollary is a useful consequence of 1.6 and Lawson's  Joint  
Cont inui ty  Theorem [4]. I t  gives information about  the left local cont inui ty  of 
functions in LMC(S)  and will be used in Section 3 below. 

C o r o l l a r y  1.7.  Let S be a locally compact or complete metrizable semitopo- 
logical semigroup with identity 1 and group of units H(1) .  / f  A C H(1) and 
LLC(S,  A) is left translation invariant, then LLC(S, A) = LMC(S) .  
P r o o f .  Let ( r  be the  canonical  LMC(S)-compactification of S ,  and  
define the act ion a : S • X ~-~ X by a(s,x) = r  By Lawson's  Theorem 
a is continuous at  every point  of H(1)  x X .  Let A C H(1) ,  and  suppose 
tha t  LLC(S ,A)  is left t rans la t ion  invariant.  Then by 1.3 and 1.6, ( r  is 
a factor  of the  canonical  LLC(S,A)-compactification of S .  I t  follows tha t  
LLC(S,  A) = LMC(S) .  �9 
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We shall also have much use for the next lemma, whose simple proof we omit. 

L e m m a  1.8. Let S and T be semitopological semigroups, and let A C S.  Al~o 
let ~ : S ~-* T be a continuous homomorphism with OA = {8(a) : a �9 A}.  Then 

8*LLC(T, ~A) C LLC(S,  A). �9 

C o r o l l a r y  1.9. I f  0 : S H T is a topological isomorphism, then ]or every 
A C S, LLC(S,  A) is isometrically *-isomorphic to LLC(T,  8A) under the dual 
mapping 8*. In particular, if s , t  �9 S and there is a topological aulomorphism 

o] S such that 6(s) --= t, then LLC(S , s )  is isometrically *-isomorphic to 
LLC(S,  t). �9 

An application of Corollary 1.9 appears in Example 3.13 below. The 
converse is easily seen to be false. If G is a topological group, then LLC(G,  a) = 
LLC(G,  1) for every a E G where 1 is the identity of G, but for every endomor- 
phism ~ of G, 8(1) = 1. 

R e m a r k  1.10. It should be clear from what has been presented so far that  the 
left locally continuous functions and their semigroup compactifications (in the 
left translation invariant cases) are natural generalizations of the left uniformly 
continuous functions and the LUC-compactification. As in Theorem 1.6, many 
of the results that  are established in the literature about the algebra LUC(S)  
generalize (with negligible effort) to the left translation invariant LZC algebras. 
We mention Theorem 2.10, Chapter 5 in [1] (concerning compactifications of 
semidirect products) and Theorems 3.2, 3.4, 3.6 and 3.8 in [2] as further examples 
of such results. These extensions and their consequences are discussed in [8], 
where one may also consider the roles of left and right locally continuous functions 
in Theorem 3.13 on the compaetifications of projective (or inverse) limits. Items 
1.1-1.8 in this section are taken from [8]. 

2. T h e  L L C -s emi la t t l c e  

We now define the fundamental  order relation and equivalences that 
are associated with left locally continuous functions and which give rise to the 
semilattice structure for the C*-algebras discussed in Section 1. 

2.1 Bas i c  de f in i t ions  a n d  r e m a r k s .  In this sub-section we define three basic 
relations (_<9 P, P0 ) and the semilattice structure on a semigroup S,  all of which 
are due to left local continuity in S. For each pair of subsets A and B of S,  
define A < B if L L C ( S , B )  C LLC(S ,A) .  Then < is a preordering on the 
family T'(S) of all subsets of S ,  and _< extend': the relation C (set inclusion). 
Clearly, A <__ B and B < A if and only if LLC(S,  A) ---- LLC(S,  B).  We define 
ApB if this latter condition holds, and note that  p is an equivalence relation in 
7~(S). Let [A] represent the p-cell (or equivalence class) of the subset A C S. 
Lemma 1.2(i) implies that U[A] E [A], so we have a unique representation of each 
p-cell by its maximum element. Let g(S)  denote the set of all such maximal 
representatives for p, and note that g(S)  is non-empty since it always contains 
S.  

Observe that the restriction of the canonical ordering < to g(S)  coin- 
cides with the set inclusion C. This follows from the fact that  if A C S and 
B E g (S ) ,  then A < B if and only if A C B (use 1.2(i) to show that  AUB C B).  
Therefore, the family 

LLC(S)  = {LLC(S,  A):  A E s 
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of all distinct spaces of left locally continuous functions on S is partially ordered 
by set inclusion C and as such it is order anti-isomorphic to s  Furthermore, 
for A, B E E(S) we have 

LLC(S, A) M LLC(S, B) = LLC(S, A U B) = LLC(S, U[A U B]) 

and U[A U B] e E(S).  Thus LLC(S) forms a lower (or meet) semilattice with 
respect to set intersection, which we call the LLC-semilattice of S.  Note that  
the C*-algebras LUC(S) and LMC(S)  are, respectively, the minimum and the 
maximum elements of LLC(S).  

In the corresponding semilattice ~'(S) of subsets of S ,  the semigroup S 
itself represents the maximum element with respect to the ordering (set inclusion) 
on E(S).  The  minimum element (which corresponds to LMC(S) )  is obviously 
the set U[O], namely, the maximum element of the p-cell of O. U[O] is the 
largest subset of S where every member of LMC(S)  is left locally continuous 
at every point. From, e.g., [1] and [5], it is easy to see that  if $1 and $2 are, 
respectively, the additive groups of real and rational numbers with the usual 
topology, then U[O] = R for the group $1 while U[O] = 0 for the group $2 
(also see 2.3 below). 

It should also be noted here that  as a consequence of 1.8 if S and T are 
topologically isomorphic semitopological semigroups under a mapping 0 : S ~ T,  
then LLC(S) is semilattice-isomorphic to LLC(T) under the mapping 

LLC(S, A) H LLC(T, U[0A]), A E s  

and every C*-algebra LLC(S, A) in LLC(S) is isometrically *-isomorphic under 
the dual map 0* to LLC(T, OA) = LLC(T, U[OA]) in LLC(T).  

Now we define a relation in S that  arises naturally when considering 
left local continuity. For each pair of elements a,b E S, we define apob if 
LLC(S,a) = LLC(S, b). Then P0 is an equivalence relation in S and for each 
s E S,  the p0-cell [s] is precisely the union of all the singletons in the p-cell 
[{s}]. Hence [s] C U[{s}], and this containment is usually strict (as in the 
usual multiplicative reals, where [0]= {0} while U[{O}] = R) .  Since the p0-cells 
parti t ion S,  if R is any complete set of representatives for P0, then as one might 
expect, LLC(S, R) = A{LLC(S, [r]) :  r E _R} = LUC(S).  However, unlike p, 
in general there is no explicit way of selecting a representative from each P0 -cell 
and constructing a complete set of representatives for p0 (i.e., constructing the 
analog of ~'(S)). This deficiency is to some extent overcome by a remarkable 
property of p0 : If S has an identity, then the p0-cells ate always bounded below 
by the cells of a purely algebraic relation which we proceed to define next. 

Let S be a semigroup with an identity element 1. For a, b E S,  define 
aplb if a l l ( l )  = bH(1). The  relation p~ is easily seen to  be an equivalence 
relation (in fact, a left congruence). If H(1) is "normal" in S (in the sense that  
sH(1)  = H(1)s  for all s E S)  then Pl is actually a congruence. Note that p~ is 
the universal relation S x S if and only if S is a group, and at the other extreme, 
p~ is the identity relation "="  if and only if H(1) = {1} (e.g., if S is a band 
with identity). The following useful lemma establishes the link between Pl and 

P0. 

L e m m a  2.2.  Let S be a semitopological semigrou p with identity 1. Then 
(i) For each s E S, the Pl-cell of s is the set sH(1).  

(ii) s g ( 1 )  C [s] for every s E S; i.e., if tpls then tpos, t E S. 
P r o o f .  (i) t e s g ( 1 )  implies that tH(1) C sH(1) and that  s E t g ( 1 ) .  Hence, 
sH(1)  C t g ( 1 )  also; i.e., t g ( 1 )  = sH(1)  or tp,s. Tke converse is clear. 
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(ii) Let s �9 .9, u �9 H(1) and let f E LLC(.9, su). Suppose tha t  {sn} is 
a net tha t  converges to s. Then the net {s~u} converges to su and for each q 

I IL=, f  - L ~ f l l  = I I L s , u u - , f  - L s . . - , I I I  ~ l l L , , u f  - L s . f l l .  

It follows tha t  f C LLC(S ,s ) .  Conversely, if f E LLC(S,s )  and if {t-~} is a 
net converging to su, then the net {t~u -1} converges to s and an argument  
similar to the  one above shows that  f E LLC(S, su). Hence for each u E H(1) ,  
LLC(S,  su) = LLC(S,  s);  i.e., su E Is]. �9 

The  next corollary is immediate  from 2.2 and verifies an expected sit- 
uat ion for groups. More substant ia l  appl icat ions of 2.2 are given in the next 
section. 

C o r o l l a r y  2.3.  For a semitopological group S,  LLC(S)  = {LUC(S),  L MC(S ) )  
and U[O] is empty unless LUC(S) = LMC(S )  (e.g., if S is locally compact), 
in which case U[O] = S .  �9 

Semigroups S for which LLC(S)  is a singleton (i.e., when LUC(S)  = 
L M C ( S ) )  may be called LLC-trivial. Hence a locally compact  or complete 
metr izable  topological group is LLC-trivial, as is a compact  topological semi- 
group, a discrete semigroup or a left zero semigroup. The classification "LLC-  
trivial" is clearly invariant under topological  isomorphisms. 

3. T h e  LLC s t r u c t u r e  o f  fu l l  l a t t i c e s  o f  g r o u p s  

The  main purpose  of this section is to apply  the results of the previous 
sections to (full) lat t ices of groups and obta in  a complete  descr ipt ion of their 
LLC-semilattice and of each of the C*-algebras in the semilattice.  

For our purposes,  a group with a zero is a semitopological  semigroup S 
containing a zero element 0 and an identi ty element 1 such tha t  the group of units 
is the complement  S \{0}  which is dense in S.  The  results in [8] indicate that  
if S is a group with a zero then LLC(S, A) is left t ransla t ion invariant  (hence 
m-admissible)  for every subset A C S,  and if S is locally compact  or complete 
metr izable,  then LLC(S)  = {LUC(S),  LMC(S)}  with LUC(S)  = LLC(S,O) 
and L M C ( S )  = LLC(S,  S\{0}) .  We now consider the more e laborate  s i tuat ion 
for locally compact  or  complete metr izable  (a rb i t ra ry)  direct  products  of groups 
with zeros, which are not t reated in [8]. 

D e f i n i t i o n  3.1. Let 2 r be a non-empty set and let {S,~ : a E I}  be a family 
in which Sa  is ei ther a group or a group with  a zero for each a E I .  Then  the 
direct  product  

S( I )  = I - [ { S ~  : - C Z} (3) 

is called a full lattice of groups. The topology of S(I )  is normal ly  the product  
topology, and  this topology will be assumed throughout  this paper .  Although 
used here evidently for the first t ime, the name "full lat t ice of groups" is adopted  
in conformity with the algebraic l i tera ture  (such as [7] for instance),  where 
the  more general "semilatt ices of groups" are discussed (also known as Clifford 
semigroups,  these are  basically subdirect  products  of the families of groups and 
groups with zeros). 

N o t a t i o n  3.2.  Since a direct product  of semitopological  groups is a semitopo- 
logical group, for s implici ty of nota t ion we will assume that the family in (3) 
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contains at most one semitopological group. This assumption will not have any 
significant effect on the results of this section. Thus it is convenient to write the 
index set as I r = {a ~} U I and assume Ss, = G is a semitopological group while 
Ss is a group with a zero for each a E I .  Therefore, S( I ' )  = G x S ( I ) .  For 
each ~ E I r, we denote the projection S ( I  t) ~-* S~ by ps ,  and denote by 0s and 
I s  the zero (if c~ 7~ a ' )  and the identity elements, respectively, of Ss .  Also for 
each non-empty, proper subset J C I ~, we denote by 1 j  the element of S ( I  r) 
satisfying the following: 

p s ( 1 j ) = l s  if a E  J, p ~ ( 1 j ) = 0 s  if ~ ~ J. 

For consistency and convenience, we also define 1I, = 1, the identity of S ( f ' ) .  
Finally, we use the prime notat ion for subsets to indicate that the subset contains 
a ' .  Hence J '  C I '  means that  j r  is a subset of I '  and J '  contains a ' .  It is 
evident that  the set E ( S ( I ' ) )  = {1j, : J '  C I '}  is the set of all idempotents of 
S( I ' )  and that  each idempotent  is central. 

L e m r n a  3.3.  Let S = S ( I  r) be a full lattice of groups, and let H(1) be the 
group of units of S .  

(i) For each J '  C f ' ,  1j, S = {1j, s : s e S}  is a closed (two-sided) ideal of 
S ,  called a principal ideal. 

5i)  M = S \ H ( 1 )  i~ the unique mazimal ideal of S .  
(iii) g ( 1 )  is dense in S .  I f  f '  is infinite, then M is also dense in S .  
(iv) If z' i~ finite, ~hen H(~) is open and M is clo~ed. 

P r o o f .  (i) This assertion follows from the identity 

1J, S = N { p 2 1 ( 0 a )  : Ot E I t \J  t} 

and the fact that  p~ l (0s )  is a closed ideal in S.  
(ii) Note that  M - U{p~l(Os) : a E I} so that M is an ideal. 

Uniquness and maximali ty of M follow from the fact that  no proper ideal of 
S can contain a member of H(1) .  

(iii) Let s e S,  and let g s  = N { p - ~ ( U s , ) :  ai  E I ' ,  i = 1 , 2 , . . . , n } ,  
where Us, is an open neighborhood of ps,(s)  = ss, in S. Since Ss , \ {0s ,}  is 
dense in S s , ,  Us, contains a point as, r 0s , ,  i = 1 , 2 , . . . , n .  Define a E S 
such that  ps,(a)  = as , ,  and ps(a)  = l s ,  if c~ r a i  , i = 1 , 2 , . . . , n .  Then  
a E g ( t )  Q Ns, implying that  H(1) is dense. 

If I '  is infinite, then for Ns as above, p~(N~) = S# for some /3 E I .  
Hence p~l (0a)  M N~ is a non-empty subset of M F1N~, so that  M is dense. 

(iv) If I '  is finite, then H(1) = N { p ~ l ( S s \ { 0 s } )  : a E I} is open and 
thus M is closed. �9 

Note that  each idempotent  l j, is the identity for the ideal 1j, S .  This 
fact is used in the following lemma. 

L e m m a  3.4.  Let S = S ( I  r) be a full lattice of groups and let j r  C I I. I f  1j, S 
is locally compact or complete metrizable with group of units H(1 j , )  then 

L L C ( 1 j ,  S, H(1j , ) )  = L M C ( 1 j ,  S).  

P r o o f .  This lemma is an immediate consequence of Corollary 1.7 provided 
that  we show L L C ( 1 j ,  S, H(1 j, )) is left t ranslat ion i~Jvariant. As the following 
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arguments  do not depend on the specific choice of the subset J~, we only consider 
the case J '  = I ~ (this will simplify the notation). Hence we must  show that 
L L C ( S ,  H(1)) is left t ranslat ion invariant. 

Recall that  S = I-[{S~ : a E I ' } ,  where S~ = G if a = a ' ,  and 
otherwise Sa is a group with zero 0~, a E I .  For each s~ E Sa, s~ ~ 0a, 
let h~, be the inner automorphism defined by ha~.(x,~) = s~x,~s~ 1, x~, E S,~. 
Also define h0, = hl~,  the identity function on Sa.  Note that for tc~ E Sc~ and 
non-zero Sct E ,-~o~ 

saht~(Xot) -~- saht , (xa)s~lsc~  = hs,,(ht~,(xo,))s,~. 

It follows that  

even when s~ = 0~. Now for each s E S,  define h , ( x )  as follows: 

p,~(ha(x)) = h , . ( xo )  a E I ' , x  E S 

where we have wri t ten s~ and x ,  for p~(s) and p,~(x), respectively (we shall 
follow this practice where it is helpful in simplifying the notation). Note that 
ha : S ~ S is a well-defined function for every s E S (h  is the function whose 
coordinates consist of the functions h ~  ). In particular, for u E H(1) and x E S, 
h~(x)  = uxu  -1 , so that  ha is a topological automorphism. Further, it is readily 
verified that  for each s E S, ha = ha,, where J E H(1) is defined as: 

p ~ ( J ) = s ~  if s,~r p ~ , ( s ' ) = l ~  if s~ =0,~. 

Now suppose that u E H(1) ,  and let {s0} be a net in S converging to u. Since 
u = uuu  -1 = ha(u) ,  it follows that if Ba is a neighborhood basis in S at u,  then 
the family { h a N  : N E 13a} is also a neighborhood basis at u. Hence, without 
loss of generality, we may assume that  {s0} is in some neighborhood of u of the 
form h , N .  Thus for each r/, s o = h~(xo) for some x 0 E N .  This implies that 
for each r/, x 0 = u - l % u  = ha-~(so) , so the points x 0 form a net in N that 
converges to u. Therefore, for each f E L L C ( S , H ( 1 ) )  and s E S,  

[[La.(Laf)  - L~(L . f ) [[  = [IL.hu(x.) f  -- Lah.(a)fl l  

= IlLh,(h~(x.))af - Lh,(h.(~))afH 

< IlLho,,,(~,)f -- Lh,,Aa)fll. 

Since ha,,,(u) E H(1) and the net {h,,a(x0) } converges to hs ,u(u) ,  the last 
norm quant i ty  above converges to zero, implying that  L s f  E L L C ( S ,  u)  for each 
u E g ( 1 ) .  It follows that L L C ( S ,  H(1)) is left t ranslat ion invariant. �9 

D e f i n i t i o n  3.5. Let S = S ( P )  be a full lattice of groups, and let K C I 
(hence a '  • g ) .  A function f e C ( S )  is K-cons tan t  if I (1S , \KS ) = y(s) for all 
s 6 S.  Intuitively, f is K-cons tan t  if it does not depend on the coordinates in 
K (also see the paragraph before Lemma 3.14). For convenience, we may extend 
the defintion to K = 0 by defining the set of all O-constant  functions to be 
c(s). 

The following is a key result. Corollary 3.15 below provides an alternative 
characterization in terms of continuous functions on principal ideals. 
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T h e o r e m  3.6.  Let S = S( I ')  be a full lattice of groups and let J '  C I ' .  I f  f E 
L L C ( S ,  l z , ) ,  then f is ( I ' \J ' ) -constant .  Conversely, if f is a ( I ' \ J ' ) -cons tant  
function in L M C ( S )  and 1j, S is locally compact or complete metrizable, then 
f E LLC(S ,  1j , ) .  

P r o o f .  Assume tha t  f E C(S)  and that  f is not ( I ' \ J ' ) - c o n s t a n t .  Also the 
case J' = I'  being trivial,  suppose  that  J '  # I t. Then there is so E S such that  
f (so)  # f (1z ,  so). Since by Lemma 3.3(iii) g ( 1 )  is dense in S ,  we may choose 
a net  {so} in H(1)  that  converges to 1 j , .  We further  assume tha t  pa(su) = 1~ 
if a E J ' .  For  each r/, define x ,  = s'~lso . Then sox o = so and 1j, x ,  = 1],s0 
for every r/. Therefore, for each 7] 

IILs, f - Ll , , f l l  >_ I f ( ~ , x , )  - f ( i J ,  x , ) l  = I f ( s o )  - f ( 1 j ,  so ) l  > O. 

Hence, f r LLC(S ,  1j , ) .  
Conversely, suppose tha t  1 j ,  S is locally compact  or complete  metr izable,  

and  let f be an ( I ' \ J ' ) - c o n s t a n t  function in L M C ( S ) .  Note tha t  g = f[1j, s 6 
L M C ( 1 j ,  S) (1.8, with 8 the inclusion map  and A the empty  set). Let {so} be 
a net  in S tha t  converges to 1 j , ,  and note tha t  

[ [ L , , f  - L1j, fl[ = s u p  If(1j,  sol j, x ) - f (1 j ,  x)l 
x E S  

= s u p  If(1j,  s , y ) -  f ( y ) [  
y E I j ,  S 

= I I L a ~ , s , g  - La~ ,g l l .  

Since {1j, so} converges to 1j, in 1j, S ,  Lemma 3.4 implies that  the last 
no rm quant i ty  above involving the function g approaches zero, so tha t  f E 
LLC(S ,  1] , ) .  �9 

Recall  tha t  every closed subspace of a locally compact  (respectively, com- 
ple te  metr izable)  space is locally compact  (respectively, complete  metrizable) .  
Hence for a locally compact  or complete  metr izable  full la t t ice of groups S( I ' )  
Theorem 3.6 can be res ta ted as: 
"A function f in L M C ( S ( I ' ) )  is left locally continuous at 1j,,  J'  C I ' ,  if and 
only if f is ( I ' \  J') -constant." 

T h e  following lemma is needed in the impor tan t  Corol lary 3.8 below. 

L e m m a  3.7 .  Let T be a locally compact semitopological group with a zero. 
Then W A P ( T )  contains non-constant functions. 

P r o o f .  Since T\{0}  is a locally compact  topological  group, C0(T\{0})  C 
W A P ( T \ { O } )  [1]. Let V be a compact  neighborhood of 1 in T \{0}  and let g 
be a continuous function on T \{0}  such tha t  9(1) = 1, g(t) = 0 for t ~ U. 
Thus  g E W A P ( T \ { O } ) .  Now define the function f as: f ( t )  = g(t) if t ~ 0 and 
f (0 )  = 0. Note tha t  f E C(T)  and f is not constant .  We apply  the double l imit  
cr i ter ion of Grothendieck to show that  f E W A P ( T ) .  Let {s,~} and {tn} be 
sequences in T such that  all of the  limits defining the quanti t ies  a and b below 

a = limmlinmf(smtn), b = l im l im f ( sm tn )  

exist.  If {sin} and { t ,}  converge to s and t respectively, then a = f ( s t )  = b. 
Otherwise,  ei ther  a = 0 = b or f ( S m t , )  = g (smt , )  for m and n large enough. 
In the  la t te r  ease, a = b since g is weakly almost  periodic. Thus  a = b in all 
cases, implying tha t  f E W A P ( T ) .  �9 
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It may be worth noting here that  the proof of 3.7 shows that  WAP( T)  
actually contains all continuous functions f with compact support such that 
f(0)  = 0 and the support  does not contain 0. 

Recall that  a product space I-I{S~ : c~ �9 I} is locally compact if and 
only if S~ is locally compact for all c~ �9 I and S,~ is compact for all but  finitely 
many a .  

C o r o l l a r y  3.8.  Let S = S(I') be a full lattice of groups. 
(i) If S is locally compact or complete metrizable, and if .~ is a non- 

empty family of primed subsets of I' ,  then LLC(S, {1j, : J '  e Y}) -- 
LLC(S, 1F), where F = n.T. 

(it) If S is locally compact and J' C K'  C I', then LLC(S, 1 j,) C LLC(S, 1~) 
with equality holding if and only if J' = K' .  Hence, LLC(S, 1j,) C 
LLC(S, 1K,) if and only if ]' C K ' .  

P r o o f .  (i) By 3.6 and 1.2(i), f 6 LLC(S, {1j, : J '  �9 .~'}) if and only if f is 
(I'\J')-constant for all J '  �9 .Y', if and only if f is ( I ' \ F ) - cons t an t ,  if and only 
if f �9 LLC(S, 1f) .  

(it) By Part  (i) and 1.2(i) 

LLC(S, 1j,) = LLC(S, 1J, nK,) 

= L L C ( S ,  {1j,, 1K,}) 
= LLC(S, 1j,) N LLC(S, 1g,) 

which proves the first assertion. To complete the proof, suppose that dt # K ' .  
Let f 6 LMC(S)  be ( I ' \ J ' ) - c o n s t a n t  and choose /~ 6 K ' \ J ' .  By Lemma 3.7 
LMC(S~) contains a non-constant function f~,  so that  p*~f~ = f ,  op,  is a non- 
constant function in LMC(S)  (Lemma 1.8). It follows that  f+p*~f~ 6 LMC(S)  
is ( / ' \ / ( ' ) - c o n s t a n t  but not ( I ' \ J ' ) - cons t an t .  Hence, by Theorem 3.6 f + p*~f~ 
is a member of LLC(S, 1K,)\LLC(S, 1j,).  �9 

C o r o l l a r y  3.9. Let S : S(I') = G x S(I) be a locally compact or complete 
metrizable full lattice of groups. Then LUC(S) is isometrically *-isomorphic to 
LUC(G). 
P r o o f .  Since ~ { J '  : J '  C I '}  -- {a '} Corollary 3.8(i) implies that 
LUC(S) = LLC(S,I{~,}).  Hence, by Theorem 3.6, LUC(S) consists of the 
/ -cons tan t  functions in LMC(S) .  Note that since [1{~,}] = G x {0}, it follows 
that  LLC(S, 1{~,}) = LLC(S,G x {0}), where 0 is the zero element in S(I) .  
Let p~, : S ~ G be the projection of S onto G, and let qa, denote the em- 
bedding x ~ (x,0) : G ~ S.  For every f 6 LUC(S),  due to / -constancy,  
f = foq~,  opt,  = (q~, op~,)*f, so that LUC(S) = (q~, op~,)*LUC(S). Thus 

LUC(S) = p*~,q*,LLC(S, V • {0}) C p*,LVC(V) C LUC(S),  

where the inclusions follow from Lemma 1.8. In particular, p*,LUC(G) = 
LUC(S) ,  with p*, an isometric *-isomorphism onto LUC(S).  �9 

We are now ready for the second main theorem of this section. 

T h e o r e m  3.10.  If S = S(I')  is a locally compact full lattice of groups, 
then LLC(S)  is isomorphic to the Boolean lattice (P(I),fq, U) of all subsets of 
I = I ' \ { a ' }  with respect to set intersection and union. 
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P r o o f .  Corol lary  3.8 implies tha t  the par t ia l ly  ordered set 

(C, C) = ({LLC(S,  1 j , ) :  J '  C Z'}, C) 

is isomorphic to the  par t ia l ly  ordered set (7)(I),  C) (in the sense that  the bi ject ion 
J ~ LLC(S,  l z , )  : :P(I) ~ s and its inverse are both  order-preserving).  Thus  
(7~(I), M, U) is la t t ice- isomorphic to s under  set intersection M and a "join" 
(least upper  bound)  opera t ion  V defined by 

LLC(S,  l z , )  V LLC(S,  1K,) = LLC(S,  1 j, uK,). 

We now show tha t  LLC(S)  is isomorphic to the lat t ice s This  clearly 
follows if we show that  for every subset  A C S ,  there exists J '  C I ~ such tha t  
L L C ( S , A )  = LLC(S,  1j,). If A is empty, then by Lemma 3.4 LLC(S ,A)  = 
L M C ( S )  = LLC(S,  1), and we may set J '  = I ' .  Now suppose that  A ~ 0 and 
let E(S)  be the set of all idempotents  in S.  We first establish tha t  E(S)H(1)  ---- 
S.  Let  s E S and define Ks = {a E I '  : pc,(s) ~ 0~}. If K ,  = I ' ,  then  
s 6 H(1 ) ,  so tha t  s = i s  �9 E(S)H(1) .  Otherwise,  define t ,  �9 H(1) as follows: 

Pa(G)=P~(S) if a � 9  p=(ts)= la if aq~K, .  

Then s = 1K, t8 �9 E(S)H(1) ,  and it follows tha t  S = E(S)H(1) .  Lemma 2.2 
now implies tha t  S = U{[1K,] : K '  C I '} ,  so tha t  for each a �9 A there is a 
pr imed Ja C I '  such tha t  a �9 [1j.];  i.e., LLC(S ,a)  = LLC(S,  1j .) .  Hence, 
from 3.8(i) and  1.2(i) it  follows tha t  L L C ( S , A )  = ~ { L L C ( S ,  1j~) : a �9 A} = 
LLC(S,  1j,), where J '  = ~ { J ~ :  a �9 A}. " 

C o r o l l a r y  3 .11 .  Let S = S(I ')  be a full lattice of groups. 
(i) I f  S is locally compact or complete mctrizable, then E(S)  is a complete 

set of represcntativc~ for the relation po, [s] = sH(1)  for all s �9 S, and 
H(1)  is normal. Hence, Po is a congruence and the quotient S/po i~ 
algebraically isomorphic to E( S) . 

(ii) I f  S is locally compact and Ej , (S )  = { 1 K ,  : K '  D J ' } ,  then 

$(S) = {Ej , (S)H(1)  : J' C I'}. 

P r o o f .  (i) T h a t  E(S)  is a complete  set of representat ives for p0 is es tabl ished 
in the  proof  of Theorem 3.10 where we show tha t  s = LLC(S) .  Further ,  
S = U{1j ,  H(1)  : J '  c I '}  = U{[1g,] : J '  c I ' } ,  also as in the proof  of 3.10. 
Since the  above unions are disjoint,  Lemma 2.2 implies tha t  [1j,] = 1j, H(1) .  
Now, for each s �9 S there is J '  C I '  such tha t  [s] = [1j,]. This means tha t  
there is u E H(1)  such tha t  su = 1 j , .  Hence, 1j, H(1)  C sH(1 ) ,  implying tha t  
[s] = sH(1) .  

Fur thermore,  for each s �9 S ,  sH(1)  = 1j, H(1)  for some J '  C I ' .  Hence 
there is w E H(1)  such tha t  for each u e H(1)  

s~ = 1j ,  wu = 1j ,  w ~ - ~ w  = w ~ - ~ l j , ~  = ( ~ u ~ - ~ ) s  �9 H ( 1 ) s .  

A similar  a rgument  implies tha t  us �9 sH(1)  for each u �9 H(1) .  Therefore, 
sH(1)  = H(1)s ;  i.e., H(1)  is normal.  The  s ta tement  about  S/po is now clear. 

(ii) Suppose J '  C K '  C I ' .  Then LLC(S,  1j,) C LLC(S,  1K,) and 
LLC(S,  IK, H(1) )  = LLC(S,  1g,).  Thus  

LLC(S,  Ej , (S)H(1))  = N { L L C ( S ,  1K,) :  K ' D  g '} 

= LLC(S,  1z,) 

= LLC(S,  U[{1j,}]). 
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Therefore, Ej , (S)H(1)  C U[{iJ,}l .  On the other  hand,  if a E U[{1j,}], then by 
Pa r t  (i) a E [1g,] = 1K, H(1)  for some K'  C I ' .  Note tha t  

LLC(S,  1j , )  = LLC(S,U[{1j,}]) C LLC(S ,a)  = LLC(S,  1K,). 

Now Corollary 3.8 implies tha t  J '  C K ' ,  so tha t  a E Ej , (S)H(1) .  Hence, for 
each J '  C I ' ,  U[{1j,}] = Ej , (S)H(1) .  The assert ion about  s  now follows 
from Theorem 3.10. �9 

Note tha t  when S(I ' )  is locally compact  (see also 3.12 below), Corollary 
3.11 identifies the  LLC equivalence relat ion P0 with  the na tu ra l  semilat t ice 
congruence on S(I ' )  and it also identifies the LLC lat t ice with the lat t ice 
E(S(I ' ) )  under the canonical idempotent  ordering [7]. 

The  assumpt ion of local compactness is not a necessary condit ion in 
Theorem 3.10, as the next example demonstrates .  

E x a m p l e  3.12.  (A metric,  non-locally compact  case.) Let S = l'In~=i Sn,  
where S,~ is a complete  metrizable group with a zero for each n = 1 , 2 , 3 , . . . .  
Since all metric spaces are homeomorphic to metric spaces of d iameter  one 
[3], we may assume tha t  S ,  admits  a metric d ,  such that  d, (x ,y )  < 1 for 
x,y E S , ,  n = 1 , 2 , 3 , . . . .  If we define d : S x S H [0, oc) by 

o o  

d(s, t) = E 2 - " d , ( s , ,  t=), s,, = p,(s),  G, = p,,(t),  n = 1,2, 3 . . . .  
r L ~ l  

then d is a metric for the space S ( the familiar "product  metr ic")  and (S, d) is a 
complete  metric space of diameter  one whose metric topology coincides with the 
product  topology [3]. Al though 3.10 cannot be direct ly appl ied to this example,  
all of the results preceeding 3.10 (except 3.7) do apply  if LMC(Sn)  contains non- 
constant  functions for all n >__ 1. This  last condit ion is, in par t icular ,  satisfied by 
Lemma 3.7 if for each n >_ 1, Sn is locally compact.  Note that  even in this l a t te r  
case, if Sn is non-compact  for infinitely many n then S is not  locally compact ,  
a l though LLC(S)  has the same propert ies  s ta ted  in 3.10. 

In certain cases, it may happen  that  while dist inct ,  some members  of 
LLC(S)  are isomorphic to each other. This is i l lustrated in the following exam- 
ple. 

E x a m p l e  3.13.  Let I be a non-empty set and let T be a group with a zero. 
Then the direct product  T I is the space of all functions x : I ~-* T .  Wi th  the 
topology of pointwise convergence T x is a full lat t ice of groups and for each 
J C I ,  the idempotent  1d is just  the characterist ic function of J .  Now suppose 
tha t  one of the following restrict ions holds: 

(i) T is compact;  
(ii) T is locally compact  and complete metrizable,  and I is countable;  
(iii) T is locally compact  and  I is finite; 

Then by  Theorem 3.10 (for (ii) use Example  3.12 with S,, = T for all n )  
L L C ( T  I) is Boolean and lat t ice isomorphic to (79(1),fq, O). Let J , K  C I 
and ]J[ = [K[.  Let b : I ~-* I be a bijection with  b(K) = J,  and define 
8b : T [ H T I by 8b(x) = x o b, x E T I �9 Then 8b is a topological  au tomorph i sm 
with Ob(1j) = 1K. Hence Corollary 1.9 implies that  L L C ( T  I, 1j )  is isometr ical ly 
�9 - isomorphic to LLC(T  ~, 1 g ) .  Thus if L L C ( T  x, 1j) ,  L L C ( T  z, 1K) E L L C ( T  ~) 
with J J[ # [K[, then by identifying isomorphic copies we may assume tha t  
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J C K ,  or equivalently (3.8), tha t  L L C ( T  I, 1 j )  C L L C ( T  1, 1K). It follows tha t  
L L C ( T  I) is l inear up to isomorphisms. We note here that  for compact  T ,  T :  
is also compact .  Hence in case (i) above, ins tead of 1.9 it would be easier to use 
Corol lary 3.16 below. 

We close this section by character izing the set of all continuous ( I ' \ J ' ) -  
constant  functions (hence also L L C ( S ,  1j , )  ) in terms of C(1j ,  S ) ,  J'  C I ' .  
As remarked in Example  3.13, these character izat ions can be helpful in set t l ing 
i somorphism questions about  L L C  algebras. Let I be a non-empty  set and let 
{S~ : a 6 I}  be a family of topological spaces. For each J C I ,  J ~ O , I ,  
let S j  = r i { s ~  : (~ 6 J } ,  and let p j  : S ~-* S j  be the project ion of S 
onto S j .  Then  the dual  map  p~ : C ( S j )  ~ C(S)  is a l inear isometry and a 
conjugate-preserving monomorphism,  as may be verified directly. We also extend 
Definit ion 3.5 to continuous functions defined on topological spaces: If K ~ 0 ,  I ,  
then f E C(S )  is K - c o n s t a n t  on the product  S ,  if f ( s )  = f ( t )  for every pair  
s, t 6 S satisfying pi\K(S)  = P1\g( t ) .  

L e m m a  3 .14 .  Let S = rI { S~ : a 6 I}  be a direct product of topological spaces 
S,~, and let J C I, J r 0 ,  I .  Then p*jC(Sj)  is the set of all ( I \ J ) - cons tan t  
functions in C( S) .  

P r o o f .  For  each g 6 C ( S j ) ,  p*jg = g o p j  is continuous on S and ( I \ J ) -  
constant .  Conversely, let f be an ( I \ J ) - c o n s t a n t  function in C(S) .  Let t 
be a fixed element of S I \ j  and for each s 6 S j ,  define x8 6 5' as follows: 
p j ( x , )  = s, p : \ j ( x s )  = t. Now define h(s) = f ( x , ) ,  s 6 S j .  Then h is uniquely 
defined by f and it is easily verified that  h e C ( S j ) .  Furthermore ,  due to I \ J -  
constancy, p*zh = f ,  and the lemma follows. �9 

As a consequence of Lemma 3.14, we may  assert  that  the set of all ( I k J ) -  
constant functions in C( S) is isometrically *-isomorphic to C( S j ) .  In the next 
corol lary we resume the use of Notat ions 3.2. 

C o r o l l a r y  3 .15 .  Let S = S ( I ' )  be a locally compact or complete metrizable 
full  lattice of groups, and let J '  C I' ,  J '  ~ I ' .  Then there exists a surjective 
continuous homomorphism iv : S ~ 1j, S such that 

L L C (  S, 1j , )  = ~r*C(1j, S)  n L M  C( S). 

P r o o f .  F rom Theorem 3.6 and Lemma 3.14 we may infer tha t  L L C ( S ,  1j , )  = 
p*j,C(Sj ,)  n L M C ( S ) .  Also 1j, S is topologically isomorphic to S j,  under the 
obvious identif icat ion of elements which we denote  by 0j, : S j, ~-* 1j, S (O j, is the 
mapp ing  tha t  inserts all the zero coordinates outside J ' ) .  Define ~r = Oa, o p j , ,  
and note tha t  iv has the  s ta ted  propert ies.  �9 

Corollary 3 .16 .  Let S = S ( I ' )  be a compact full lattice of groups, and let 
J ' ,  K '  be proper subsets of I ' .  

(i) I f  the ideal 1j, S is topologically isomorphic to the ideal 1K, S ,  then 
L L C ( S ,  1j,)  is isometrically *-isomorphic to L L C ( S ,  1K,).  

5 0  c ( s ) l l j ,  s = LLC(S,  1J , ) l l j ,  S = C ( 1 j ,  S).  
P r o o f .  (i) Since L M C ( S )  = C ( S ) ,  Corollary 3.15 implies tha t  L L C ( S ,  1L) = 
7r[C(1nS),  L = J ' , K ' ,  with 7[ L : S ~ 1LS as given in 3.15. Hence, if 
r : 1j, S ~-* 1 K, S is a topological  isomorphism, then 

L L C ( S ,  1j , )  . . . .  1 ---- lrj, r 7r K, L L C ( S ,  1K*) 
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and Part (i) follows. 
(ii) Note that if 7r is the mapping in 3.15, then rr(s) = s for every 

s e 1j, S .  Hence for every g E C(1j, S), (Tr*g)ll~,s = (goOj ,  op j , ) l l j ,  s = g, 
and Corollary 3.15 implies that 

C(S)I1j, s a C(1j ,  S)  = LLC(S ,  1 j , ) l l , , s  C C(S)l l~,s .  

[1] 

[2] 

[3] 
[4] 

[5] 

[6] 

[7] 

[s] 

R e f e r e n c e s  

Berglund, J. F., H. D. Junghenn, and P. Milnes, "Analysis on Semi- 
groups: Function Spaces, Compactifications, Representations", Canadian 
Mathematical Society Series of Monographs and Advanced Texts, John 
Wiley and Sons, New York, 1989. 
Junghenn, H. D., Extensions of continuous functions on den~e subsemi- 
groups, Illinois J. Math. 27 (1983), 421-435. 

Kelley, J. L., "General Topology", Van Nostrand, New York, 1955. 

Lawson, J. D., Joint continuity in semitopological ~emigroups, Illinois J. 
Math. 18 (1974), 275-285. 

Milnes, P., and J. S. Pyre, CounterezampIe in the theory of continuous 
function~ on topological group~, Pacific J. Math. 66 (1976), 205-209. 

Milnes, P., and J. S. Pyre, Function spaces on semitopological semi- 
groups, Semigroup Forum 19 (1980), 347-354. 
Petrich, M., "Introduction to Semigroups", Charles E. Merrill, Colum- 
bus, Ohio, 1973. 
Sedaghat, H., "New Constructions in Semigroup Compactification The- 
ory", Dissertation, George Washington University, Washington DC, 1990. 

Department of Mathematical Sciences 
Virginia Commonwealth University 
Richmond, VA 23284-2014 

Received November 6, 1991 
and in final form July 21, 1992 

321 


