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In this paper we define a new class of algebras of bounded, continuous,
complex-valued functions on a semitopological semigroup S. Each C*-algebra of
left locally continuous functions in this class generalizes the familiar C*-algebra
LUC(S) of all left uniformly continuous functions on S (Section 1). One of the
main goals of this paper is to establish that the inclusion relationships among
these algebras of left locally continuous functions can be useful in the study and
classification of the semigroup S. Thus we show in Section 2 that the class
of all C*-algebras of left locally continuous functions on S forms a semilattice
with respect to set inclusion. The equivalences that give rise to this semilattice
result, among other things, in partitions of S and of P(S) into classes that are
characterized by certain local continuity properties. In fact, whenever translation
invariant, each C*-algebra of left locally continuous functions gives rise to a
semigroup compactification enjoying a “local joint continuity property” (a local
version of the analogous property of the LU C -compactification as in 1.5 and 1.6
below).

In order to present a concrete case, in Section 3 we discuss in detail the
structure of the semilattice of C*-algebras of left locally continuous functions
for the direct product of a family {S, : « € I} consisting of groups and
groups with zeros (we refer to such direct products as full lattices of groups). We
show that in this case the aforementioned semilattice may be identified with the
Boolean lattice of all subsets of I (or I less a singleton) via a lattice isomorphism
that is defined with the aid of the idempotents in the direct product (3.10).
Moreover, the index set I and the idempotents can be used to obtain a rather
simple characterization of each member of the lattice in terms of the C*-algebra
of all bounded, continuous functions on an appropriate principal ideal in the
direct product (3.6, 3.15). The validity of these conclusions requires no further
restrictions on the full lattice of groups than the (sufficient) conditions needed
to make Lawson’s Joint Continuity Theorem applicable (e.g., local compactness
or complete metrizablility; see 3.4 and 3.6 below).

0. Preliminary concepis

All the topologies in this paper will be assumed Hausdorff. Also, S will
denote a semitopological semigroup unless otherwise noted. This means that S is
an algebraic semigroup endowed with a topology relative to which multiplication
(semigroup operation) is separately continuous. If the semigroup multiplication
(i.e., the mapping (s,t) — st : §x § — §) is continuous, then § is called a
topological semigroup. Many (though not all) of the semigroups discussed in this
paper are actually topological. Currently, there are a number of good treatments
of semitopological semigroups available and each adopts a somewhat different
point of view. The presentation in [1], for example, contains all the preliminary
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material required for this paper and we adopt essentially the same terminology.
In this section we highlight those concepts that are used here.

As mentioned before, C'(S) denotes the set of all bounded, continuous,
complex-valued functions on S; it is a translation invariant C*-algebra (with
complex conjugation as involution) containing all the constant functions on S
(an algebra F of functions on S is trensletion invaeriant if R,F U L,F C F
for all s € §, where R,f(t) = f(ts) and L,f(t) = f(st), t € S, f € F).
Two well-known C*-subalgebras of C'(S) will be of special interest to us here:
The algebra LUC(S) of all left uniformly continuous functions and the algebra
LMC(S) of all left multiplicatively continuous functions [1]. Of interest is also
the C*-algebra W AP(S) of all weakly almost periodic functions on S. For every
semitopological semigroup S, all three algebras are translation invariant and we
have WAP(S)U LUC(S) c LMC(S) [1].

And now for a summary of some of the main ideas concerning semigroup
compactifications. A compactification of a semitopological semigroup S is a
pair (¢, X), where X is a compact, Hausdorff, right topological semigroup
(z —» zy : X — X is continuous for each y € X)and ¢ : § = X is a
continuous homomorphism such that ¢(S) = X and the mappings = — ¢(s)z :
X — X, s € 9, are continuous. A continuous function 7 from a compactification
(#,X) of S to a compactification (¢,Y) of S is said to be a homomorphism if
7 o ¢ = 1. Note that such a mapping preserves multiplication and is surjective.
A compactification (¢, X) of S which possesses a certain property P (such as
that of being a topological group) is a wniversal compactification with respect
to P if for every compactification (¢/,Y) of § which has P, there exists a
homomorphism from {¢, X) onto (¥,Y).

Let (¢, X) be a compactification of S and let ¢* : C(X) — C(S5) denote
the dual mapping f — f o ¢. Then the C*-subalgebra F(S) := ¢*(C(X))
is translation invariant and left m-introverted; ie., T,F(S) C F(S) for all p
in the spectrum of F(S), where T, is defined by T, f(s) = u(L.f), f € F(S),
s € S. Conversely, let F(S) be a translation invariant and left m-introverted C*-
subalgebra of C(S) containing the constant functions (such an algebra is called
m-admissible). Let X denote the spectrum of F(S) with the weak* topology, and
let ¢: S — X be the evaluation mapping defined by ¢(s)(f) = f(s), f € F(S),
s € §. Then (¢,X) is a compactification of S such that F(S) = ¢*(C(X)),
where multiplication on X is defined by zy = z o Ty. (¢, X) is called the
canonical F(S)-compactification of S.

The algebras WAP(S), LUC(S), LMC(S) are m-admissible [1]. The
W AP(S)-compactification is the universal semitopological semigroup compact-
ification of S. The LUC(S)-compactification (¢,X) is universal with respect
to the property that the mapping (s,z) — ¢(s)z : § x X + X is continu-
ous. Finally, the LMC(S)-compactification is the universal (right topological)
semigroup compactification of S (i.e., LMC(S) is the largest m-admissible sub-
algebra of C(S5)).

1. Left locally continuous functions

In this section we define the C*-algebras of left locally continuous func-
tions on semitopological semigroups and discuss the basic properties of each such
algebra. We will also introduce the semigroup compactifications associated with
these C*-algebras.

Definition 1.1. A function f € LMC(S) is said to be left locally continuous

at a € S if the mapping
s Lyf:S5m C(5) (1)
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is continuous at the point a relative to the uniform topology on C(S). Thus f
being left locally continuous is equivalent to the norm quantity

I Ls, f — Laf|] = sup |f(syz) — f(az)]|
zeS

approaching zero for every net {s,} in S that converges to a. The set of all
functions of this type is denoted by LLC(S,a). Further, if A is a non-empty
subset of §, we define

LLC(S,A) = [[{LLC(S,a): a € A}.

It is clear that LUC(S) = LLC(S,S) ¢ LLC(S,a) for every a € S, and if
A C B, then LLC(S,B) ¢ LLC(S, A). It is thus reasonable (and helpful) to
define
LLC(S,0)=LMC(S)

where @ represents the empty set. Notice that for f to be in LLC(S, A), it is
not sufficient that the restriction of the mapping in (1) to A be norm continuous
(an example of the restriction case appears in [6] in connection with the topology
of uniform convergence on compact subsets of §).

The set of all right locally continuous functions at a, which we denote
RLC(S,a), is defined similarly via the right translation operator and the algebra
RMC(S) (RMC(S) and RUC(S) are the “right analogs” of LMC(S) and
LUC(S), respectively; they are defined in, e.g., [1]) The extensions to subsets
of S are likewise defined and, of course, RLC(S,S) = RUC(S), RLC(S5,0) =
RMC(S). The following lemma lists some of the elementary properties of the
algebras of left locally continuous functions that are used in this paper (the right
locally continuous analogs are similar). The routine proof is omitted.

Lemma 1.2.
(i) LLC(S,UF) ={W{LLC(S,A): A€ F)} for every non-empty family F
of subsets of S.
(ii) L(LLC(S,t4)) C LLC(S, A),
L(LLC(S,A)) C LLC(S,t7*A), for every t € S, where
tlA={s€S: ts€ A}.

(i) For every subset A C S, LLC(S,A) is a right translation invariant C*-
subalgebra of C(S). =

The next lemma is important with regard to the existence of semigroup
compactifications.

Lemma 1.3. For each A C S, LLC(S, A) is m-admissible if and only if 1t is
left translation invariant.

Proof. We need only show that if LLC(S,A) is left translation invariant,
then it is left m-introverted. For each p in the spectrum of LLC(S, A) there is
' in the spectrum of LMC(S) such that p'|rrc(s,4) = p. Since LMC(S) is
left m-introverted and for each s € § and f € LLC(S, A)
Tuf(s) = m(Lsf) = p'(Laf) = Ty f(s),
we conclude that T,f € LMC(S). Also since for each a € A and f €
LLC(S, A4),
“LsTuf - LaT#f“ = S‘égll‘(Lsrf) - I‘(Lazf)l < “Lsf - LafH’

it follows that T, f is left locally continuous at sach point of A. ]
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Examples 1.4. By 1.2 and 1.3, for every left ideal L in S, LLC(S,L) is
m-admissible, and if S is abelian, then LLC(S, A) is m-admissible for every
A C S. On the other hand, if § = L x Q, where L = {a;,a2} is a discrete
left zero semigroup (zy = z for each z,y € L) and Q is the group of additive
rationals under the usual topology, then LLC(S,(ay,0)) is not left translation
invariant (hence not m-admissible). To see this, note that LUC(Q) # LMC(Q)
[5]. Let f € LMC(Q)\LUC(Q). Define the function ¢ € C(S) as

g9la1,y) =0, glaz,y) = f(y), y€Q.
Using a double-limit criterion it can be shown that g € LMC(S), after which
direct calculation shows that in fact ¢ € LLC(S, (a1,0))\LLC(S, (a2,0)) (details
may be found in [8]). Now the requirement that L, 9 € LLC(S,(a1,0)) for
every (a,q) € S is equivalent to the quantity

Lo, (L(e.y9) — Liar,0)(Lay Ol = [ La, 04009 — Lea,pgll (2)
approaching zero as (s,t) — (a1,0). Let {g.} be any sequence in Q that
converges to zero, and let a = ag,¢ =0 in (2). Then ||L(q4,,4.)9 — L(ar,009]| = 0
as n — oo if and only if g € LLC(S,(az2,0)), and it was shown above that this
is not the case.

Definition 1.5. A semigroup compactification (¢, X) of S is said to have
the local joint continuity property with respect to a non-empty subset A C S
(or ljeA) if the map

(s,z) = P(s)r : Sx X X
is continuous at every point of A x X.

The proof of the first part of the following theorem for the LUC case is
given in [1). With the aid of 1.2 and 1.3, the generalization to the LLC case is
straight-forward, as is the proof of the second part of the theorem (or see [8]).
The theorem shows that the LLC -compactifications are the local versions of the
LUC -compactification in the obvious way.

Theorem 1.6.

(i) Let A be a non-empty subset of S such that LLC(S, A) is left transla-
tion tnvariant. Then the canonical LLC(S, A)-compactification of S is
universal with respect to the ljcA property.

(ii) The ljc property is invariant under compactification homomorphisms;
i.e., if A is a non-empty subset of S such that LLC(S, A) is left trans-
lation invariant, and if (¥, X) s a compactification having the ljcA
property, then every factor (homomorphic image) of it also has the ljcA
property. n
The next corollary is a useful consequence of 1.6 and Lawson’s Joint

Continuity Theorem [4]. It gives information about the left local continuity of
functions in LMC(S) and will be used in Section 3 below.

Corollary 1.7.  Let S be a locally compact or complete metrizable semitopo-
logical semigroup with identity 1 and group of units H(1). If A C H(1) and
LLC(S, A) is left translation invariant, then LLC(S, A) = LMC(S).

Proof. Let (¢,X) be the canonical LMC(S)-compactification of 5, and
define the action o : S x X — X by o(s,z) = ¢(s)z. By Lawson’s Theorem
o is continuous at every point of H(1) x X. Let A C H(1), and suppose
that LLC(S,A) is left translation invariant. Then by 1.3 and 1.6, (¢, X) is
a factor of the canonical LLC(S,A)-compactification of §. It follows that
LLC(S,A)=LMC(S). ]
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We shall also have much use for the next lemma, whose simple proof we omit.

Lemma 1.8. Let S and T be semitopological semigroups, and let A C S. Also
let 0: S — T be a continuous homomorphism with 64 = {6(a): a € A}. Then

6" LLC(T,0A) C LLC(S, A). =

Corollary 1.9. If6: S — T is a topological isomorphism, then for every
ACS, LLC(S, A) is isometrically *-isomorphic to LLC(T,0A4) under the dual
mapping 8*. In particular, if s,t € S and there is e topological automorphism
0 of S such that 6(s) = t, then LLC(S,s) 1s isometrically *-isomorphic to
LLC{S,t). ]

An application of Corollary 1.9 appears in Example 3.13 below. The
converse is easily seen to be false. If G is a topological group, then LLC(G,a) =
LLC(G,1) for every a € G where 1 is the identity of G, but for every endomor-
phism 8 of G, 6(1) = 1.

Remark 1.10. Tt should be clear from what has been presented so far that the
left locally continuous functions and their semigroup compactifications (in the
left translation invariant cases) are natural generalizations of the left uniformly
continuous functions and the LUC -compactification. As in Theorem 1.6, many
of the results that are established in the literature about the algebra LUC(S)
generalize (with negligible effort) to the left translation invariant LLC algebras.
We mention Theorem 2.10, Chapter 5 in [1] (concerning compactifications of
semidirect products) and Theorems 3.2, 3.4, 3.6 and 3.8 in [2] as further examples
of such results. These extensions and their consequences are discussed in [8],
where one may also consider the roles of left and right locally continuous functions
in Theorem 3.13 on the compactifications of projective (or inverse) limits. Items
1.1-1.8 in this section are taken from [8].

2. The LLC -semilattice

We now define the fundamental order relation and equivalences that
are associated with left locally continuous functions and which give rise to the
semilattice structure for the C*-algebras discussed in Section 1.

2.1 Basic definitions and remarks. In this sub-section we define three basic
relations (<, p, po) and the semilattice structure on a semigroup S, all of which
are due to left local continuity in S. For each pair of subsets A and B of 5,
define A < B if LLC(S,B) C LLC(S,A). Then < is a preordering on the
family P(S) of all subsets of S, and < extends the relation C (set inclusion).
Clearly, A < B and B < A if and only if LLC(S,A) = LLC(S, B). We define
ApB if this latter condition holds, and note that p is an equivalence relation in
P(S). Let [A] represent the p-cell (or equivalence class) of the subset A C S.
Lemma 1.2(i) implies that U[A] € [A], so we have a unique representation of each
p-cell by its maximum element. Let £(S) denote the set of all such maximal
representatives for p, and note that £(S) is non-empty since it always contains
S.

Observe that the restriction of the canonical ordering < to £(S) coin-
cides with the set inclusion C. This follows from the fact that if A C § and
B e &(S), then A < B ifandonlyif A C B (use 1.2(i) to show that AUB C B).
Therefore, the family

LLO(S) = {LLC(S,A): A€ £(S)}
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of all distinct spaces of left locally continuous functions on S is partially ordered
by set inclusion C and as such it is order anti-isomorphic to £(S). Furthermore,
for A,B € £(S) we have

LLC(S,A)n LLC(S, B) = LLC(S, AU B) = LLC(S,U[AU B])

and U[A U B] € £(S). Thus LLC(S) forms a lower (or meet) semilattice with
respect to set intersection, which we call the LLC -semilattice of S. Note that
the C*-algebras LUC(S) and LMC(S) are, respectively, the minimum and the
maximum elements of LLC(S).

In the corresponding semilattice £(S) of subsets of S, the semigroup S
itself represents the maximum element with respect to the ordering (set inclusion)
on £(S). The minimum element (which corresponds to LMC(S)) is obviously
the set U[@], namely, the maximum element of the p-cell of @. U[D] is the
largest subset of S where every member of LMC(S) is left locally continuous
at every point. From, e.g., [1] and [5], it is easy to see that if S; and S, are,
respectively, the additive groups of real and rational numbers with the usual
topology, then U[@] = R for the group S; while U[@] = @ for the group S
(also see 2.3 below).

It should also be noted here that as a consequence of 1.8 if S and T are
topologically isomorphic semitopological semigroups under a mapping 8§ : S — T,
then LLC(S) is semilattice-isomorphic to LLC(T) under the mapping

LLC(S,A) — LLC(T,U[04]), A€é&(S),

and every C*-algebra LLC(S, A) in LLC(S) is isometrically *-isomorphic under
the dual map 6* to LLC(T,04) = LLC(T,U[6A]) in LLC(T).

Now we define a relation in S that arises naturally when considering
left local continuity. For each pair of elements a,b € S, we define apod if
LLC(S,a) = LLC(S,b). Then py is an equivalence relation in § and for each
s € 8, the pg-cell [s] is precisely the union of all the singletons in the p-cell
[{s}]. Hence [s] C U[{s}], and this containment is usually strict (as in the
usual multiplicative reals, where [0]={0} while U{{0}] = R). Since the pg-cells
partition S, if R is any complete set of representatives for pg, then as one might
expect, LLC(S,R) = (W{LLC(S,[r]) : r € R} = LUC(S). However, unlike p,
in general there is no explicit way of selecting a representative from each pg-cell
and constructing a complete set of representatives for pg (i.e., constructing the
analog of £(S)). This deficiency is to some extent overcome by a remarkable
property of po: If S has an identity, then the pg-cells ate always bounded below
by the cells of a purely algebraic relation which we proceed to define next.

Let S be a semigroup with an identity element 1. For a,b € S, define
apib if aH(1) = bH(1). The relation p; is easily seen to be an equivalence
relation (in fact, a left congruence). If H(1) is “normal” in S (in the sense that
sH(1) = H(1)s for all s € §) then p; is actually a congruence. Note that p; is
the universal relation S x S if and only if S is a group, and at the other extreme,
p1 is the identity relation “=” if and only if H(1) = {1} (e.g., if S is a band
with identity). The following useful lemma establishes the link between p; and
Po .

Lemma 2.2. Let S be a semitopological semigroup with identity 1. Then
(i) For each s € S, the py-cell of s 1is the set sH(1).
(i) sH(1) C [s] for every s € S; i.e., if tp1s then tpgs, t€S.

Proof. (i) ¢t € sH(1) implies that tH(1) C sH(1) and that s € tH(1). Hence,
sH(1) C tH(1) also; i.e., tH(1) = sH(1) or tpis. Tke converse is clear.
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{(ii) Let s € S, u € H(1) and let f € LLC(S,su). Suppose that {s,} is
a net that converges to s. Then the net {s,u} converges to su and for each n

”Ls,,f - Lsf” = ||Ls,,uu—1f - Lsuu"lf” S “Ls,,uf - Lsuf”'

It follows that f € LLC(S,s). Conversely, if f € LLC(S,s) and if {t,} isa
net converging to su, then the net {¢{,u™!} converges to s and an argument
similar to the one above shows that f € LLC(S, su). Hence for each u € H(1),
LLC(S,su) = LLC(S,s); ie., su € [s]. =

The next corollary is immediate from 2.2 and verifies an expected sit-
uation for groups. More substantial applications of 2.2 are given in the next
section.

Corollary 2.3. For a semitopological group S, LLC(S) = {LUC(S), LMC(S)}
and U[Q] is empty unless LUC(S) = LMC(S) (e.g., if S is locally compact),
in which case U[D] = S. ]

Semigroups S for which LLC({S) is a singleton (i.e., when LUC(S) =
LMC(S)) may be called LLC -triviel. Hence a locally compact or complete
metrizable topological group is LLC-trivial, as is a compact topological semi-
group, a discrete semigroup or a left zero semigroup. The classification “LLC-
trivial” is clearly invariant under topological isomorphisms.

3. The LLC structure of full lattices of groups

The main purpose of this section is to apply the results of the previous
sections to (full) lattices of groups and obtain a complete description of their
LLC -semilattice and of each of the C*-algebras in the semilattice.

For our purposes, a group with a zero is a semitopological semigroup §
containing a zero element 0 and an identity element 1 such that the group of units
is the complement S\{0} which is dense in S. The results in [8] indicate that
if S is a group with a zero then LLC(S, A) is left translation invariant (hence
m-admissible) for every subset A C S, and if § is locally compact or complete
metrizable, then LLC(S) = {LUC(S), LMC(S)} with LUC(S) = LLC(S,0)
and LMC(S) = LLC(S,S5\{0}). We now consider the more elaborate situation
for locally compact or complete metrizable (arbitrary) direct products of groups
with zeros, which are not treated in [8].

Definition 3.1. Let I be a non-empty set and let {S,: a € I'} be a family
in which S, is either a group or a group with a zero for each a € I. Then the
direct product

SI) = [[{Sa: acl} (3)

is called a full lattice of groups. The topology of S(I) is normally the product
topology, and this topology will be assumed throughout this paper. Although
used here evidently for the first time, the name “full lattice of groups” is adopted
in conformity with the algebraic literature (such as [7] for instance), where
the more general “semilattices of groups” are discussed (also known as Clifford
semigroups, these are basically subdirect products of the families of groups and
groups with zeros).

Notation 3.2. Since a direct product of semitopological groups is a semitopo-
logical group, for simplicity of notation we will assume that the family in (3)
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contains at most one semitopological group. This assumption will not have any
significant effect on the results of this section. Thus it is convenient to write the
index set as I' = {a'} U and assume So» = G is a semitopological group while
Sa is a group with a zero for each a € I. Therefore, S(I') = G x S(I). For
each a€l, we denote the projection S(I') — S, by p., and denote by 0, and

14 the zero (1f a # o') and the identity elements, respectively, of S,. Also for
each non-empty, proper subset J C I', we denote by 1; the element of S(I')
satisfying the following:

Pa(ly)=1a if a€J, po(ly)=0, if ¢ J

For consistency and convenience, we also define 1y = 1, the identity of S({').
Finally, we use the prime notation for subsets to indicate that the subset contains

o'. Hence J' C I' means that J' is a subset of I' and J' contains o'. It is

evident that the set E(S(I')) = {1, : J' C I'} is the set of all idempotents of
S(I') and that each idempotent is central.

Lemma 3.3. Let S = S(I') be o full lattice of groups, and let H(1) be the
group of units of S.
(i) For each J' CI', 1pS={1ys: s€ S} is a closed (two-sided) ideal of
S, called a principal ideal.
(i) M = S\H(1) is the unigue mazimal ideal of S.
(i) H(1) is dense in S. If I' is infinite, then M 1is also dense in S.
(iv) If I' is finite, then H(1) is open and M is closed.

Proof. (i) This assertion follows from the identity
158 = {ra'(0a): a€I'\J'}

and the fact that p;1(04) is a closed ideal in S.

(ii) Note that M = U{p;1(0a) : o« € I} so that M is an ideal
Uniquness and maximality of M follow from the fact that no proper ideal of
S can contain a member of H(1).

(ui)LetsES and let N, = {p;](Ua) : a,EI,i—12 n}
where Uy, is an open neighborhood of pg;, (s) = $q; in S. Since S, \{OQ,} is
dense in Su;, Ua; contains a point aq; # 0o, ¢ = 1,2,...,n. Deﬁne ae S
such that pa‘(a) = Gq;, and pala) = 1o, if @ # @i , 1 = 1,2,...,n. Then
a € H(1) N N,, implying that H(1) is dense.

If I’ is infinite, then for N, as above, pg(N,) = Ss for some g € I.
Hence pEI(O,g) N N, is a non-empty subset of M N N,, so that M is dense.

(iv) If I' is finite, then H(1) = {p53*(Sa\{0a}): a € I} is open and
thus M is closed. n

Note that each idempotent 1 is the identity for the ideal 15 5. This
fact is used in the following lemma.

Lemma 3.4. Let S = S(I') be a full lattice of groups and let J' C I'. If 178
is locally compact or complete metrizable with group of units H(1y) then

LLC(15S,H(1)) = LMC(1,5).

Proof. This lemma is an immediate consequence of Corollary 1.7 provided
that we show LLC(15sS,H(1;)) is left translation invariant. As the following
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arguments do not depend on the specific choice of the subset J', we only consider
the case J' = I' (this will simplify the notation). Hence we must show that
LLC(S, H(1)) 1s left translation invariant.

Recall that S = [[{Sa: a € I'}, where S, = G if a = o, and
otherwise S, is a group with zero 0,, @ € I. For each sq € Sa, Sa # Oa,
let h,, be the inner automorphism defined by ks, (za) = $6Tas3}, Ta € Sa.
Also define kg, = hi_, the identity function on S4. Note that for #, € S, and
Nnon-zero Sy € Sa,

Sahi, (Ta) = sahi, (Ta)si sa = hs, (Bt (24))Sa-

It follows that
Saht,(Ta) = (Rs, © b1, )(Ta)Sa

even when sq = Oy. Now for each s € S, define h () as follows:
Palhs(z)) = by, (Ta) acl,ze8§

where we have written s, and z, for pa(s) and p.(z), respectively (we shall
follow this practice where it is helpful in simplifying the notation). Note that
hs : S +— S is a well-defined function for every s € S (h is the function whose
coordinates consist of the functions k,, ). In particular, for v € H(1) and z € §,
hy(z) = uzu™!, so that k, is a topological automorphism. Further, it is readily
verified that for each s € S, h; = hy, where s’ € H(1) is defined as:

Pal(8) = 50 if 30 #0a, pa(s') =1a if 34 =0,.

Now suppose that « € H(1), and let {s,} be a net in S converging to u. Since
u = uuu~! = hy,(u), it follows that if B, is a neighborhood basisin S at u, then
the family {h,N : N € B,} is also a neighborhood basis at u. Hence, without
loss of generality, we may assume that {s,} is in some neighborhood of u of the
form h,N. Thus for each 7, s, = hy(z,) for some z, € N. This implies that

for each 77, zy = u syu = hy-1(sy), so the points x, form a net in N that
converges to u. Therefore, for each f € LLC(S,H(1)) and s € S,

1Ls, (Lsf) = Lu(Ls )l = | Lahu(zn)f = Lonyu) fll
= ||La, (ho(zg))of = Lhy(hu(u)ysfll
S NLhyyz)f = Lhy ) fll-

Since hyy(u) € H(1) and the net {hyu(zy)} converges to hy,(u), the last
norm quantity above converges to zero, implying that L,f € LLC(S,u) for each
u € H(1). It follows that LLC(S, H(1)) is left translation invariant. n

Definition 3.5. Let S = S(I') be a full lattice of groups, and let K C I
(hence o' ¢ K). A function f € C(S) is K -constant if f(1p\gs) = f(s) for all
s € S. Intuitively, f is K -constant if it does not depend on the coordinates in
K (also see the paragraph before Lemma 3.14). For convenience, we may extend
the defintion to K = @ by defining the set of all ©@-constant functions to be
c(9).

The following is a key result. Corollary 3.15 below provides an alternative
characterization in terms of continuous functions on principal ideals.
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Theorem 3.6.  Let S = S(I') be a full lattice of groups and let J' C I'. If f €
LLC(S,1y), then f is (I'\J')-constant. Conversely, if f is a (I'\J')-constant
function in LMC(S) and 1pS is locally compact or complete metrizable, then
feLLC(S,1).

Proof. Assume that f € C(S) and that f is not (I'\J')-constant. Also the
case J' = I' being trivial, suppose that J' # I'. Then there is so € S such that
f(so) # f(180). Since by Lemma 3.3(iii) H(1) is dense in S, we may choose
anet {sp} in H(1) that converges to 1. We further assume that pa(sy;) = 14
if @ € J'. For each 7, define z, = s
for every n. Therefore, for each 75

Loy f = L1, fll Z |f(sp2q) — f(Lrzn)l = [£(50) = f(180)] > 0.
Hence, f ¢ LLC(S,1).

Conversely, suppose that 15 S is locally compact or complete metrizable,
and let f be an (I'\J')-constant function in LMC(S). Note that g = f|;,, s €
LMC(1yS) (1.8, with @ the inclusion map and A the empty set). Let {s,} be
a net in S that converges to 1, and note that

Ls,f = L1, fll = itexglf(lfs,,lmz) - f(lpz)|

= sup ]f(lj'sny)—f(y)[
y€L S

=||L1,,s,9 — L1, 9]

-1
7 so. Then syzq; =9 and 1yz, = 1pso

Since {lys,} converges to 1y in 155, Lemma 3.4 implies that the last
norm quantity above involving the function g approaches zero, so that f €

LLC(S,1). n

Recall that every closed subspace of a locally compact (respectively, com-
plete metrizable) space is locally compact (respectively, complete metrizable).
Hence for a locally compact or complete metrizable full lattice of groups S(I')
Theorem 3.6 can be restated as:

“A function f in LMC(S(I')) is left locally continuous at 15, J' C I', if and
only if f is (I'\J')-constant.”

The following lemma is needed in the important Corollary 3.8 below.

Lemma 3.7. Let T be a locally compact semitopological group with a zero.
Then WAP(T) contains non-constant functions.

Proof. Since T\{0} is a locally compact topological group, Co(T\{0}) C
WAP(T\{0}) [1]. Let U be a compact neighborhood of 1 in T\{0} and let ¢
be a continuous function on T\{0} such that g(1) =1, g(¢t) =0 for t ¢ U.
Thus ¢ € WAP(T\{0}). Now define the function f as: f(t) = g(t) if ¢t # 0 and
f(0) =0. Note that f € C(T) and f is not constant. We apply the double limit
criterion of Grothendieck to show that f € WAP(T). Let {sm} and {t.} be
sequences in T such that all of the limits defining the quantities ¢ and b below

a = limlim f(smtn), b= limlim f(smts)
exist. If {s;m} and {t,} converge to s and ? respectively, then a = f(st) = b.
Otherwise, either a = 0 = b or f(smtn) = g(Smta) for m and n large enough.

In the latter case, a = b since g is weakly almost periodic. Thus ¢ = b in all
cases, implying that f € WAP(T). |
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It may be worth noting here that the proof of 3.7 shows that WAP(T)
actually contains all continuous functions f with compact support such that
f(0) =0 and the support does not contain 0.

Recall that a product space [[{S~ : a € I} is locally compact if and
only if S, is locally compact for all & € I and S, is compact for all but finitely
many «.

Corollary 3.8. Let S = S(I') be a full lattice of groups.
(:) If S s locally compact or complete metrizable, and if F is a non-
empty family of primed subsets of I', then LLC(S,{1y : J' € F}) =
LLC(S,1F), where F =NF.
(i) If S is locally compact and J' CK'CI', then LLC(S,15)CLLC(S,1%)
with equality holding if and only if J' = K'. Hence, LLC(S,1y) C
LLC(S,1k) if and only if J' C K'.
Proof. (i) By 3.6 and 1.2(i), f € LLC(S,{1y: J' € F}) if and only if f is
(I'\J')-constant for all J' € F, if and only if f is (I"\F)-constant, if and only
if fe LLC(S,1F).

(i) By Part (i) and 1.2(i)

LLC(S,1p) = LLC(S, 1 pnk:)
= LLC(S, {17,1x'})
= LLC(S,15) N LLO(S,1x)

which proves the first assertion. To complete the proof, suppose that J' # K'.
Let f € LMC(S) be (I'\J')-constant and choose 8 € K'\J'. By Lemma 3.7
LMC(Sg) contains a non-constant function fg, so that psfs = fgopg is a non-

constant function in LMC(S) (Lemma 1.8). It follows that f+pjfs € LMC(S)
is (I'\K')-constant but not (I'\J')-constant. Hence, by Theorem 3.6 f + pjfs
is a member of LLC(S,1x\LLC(S,1,). n

Corollary 3.9. Let S = S(I') = G x S(I) be a locally compact or complete
metrizable full lattice of groups. Then LUC(S) is isometrically * -isomorphic to
LUC(G).

Proof. Since {J' : J' C I't = {a'} Corollary 3.8(i) implies that
LUC(S) = LLC(S,1{«'})- Hence, by Theorem 3.6, LUC(S) consists of the
I-constant functions in LMC(S). Note that since [1{o}] = G x {0}, it follows
that LLC(S,1{w}) = LLC(S,G x {0}), where 0 is the zero element in S(I).
Let po : S — G be the projection of § onto G, and let gor denote the em-
bedding z = (z,0) : G — S. For every f € LUC(S), due to I-constancy,
f=fogu0pa =(ga ©par)" [, sothat LUC(S) = (gor © por)*LUC(S). Thus

LUC(S) = p% gt LLC(S, G x {0}) C plw LUC(G) C LUC(S),

where the inclusions follow from Lemma 1.8. In particular, p%, LUC(G) =
LUC(S), with p}, an isometric *-isomorphism onto LUC(9). |

We are now ready for the second main theorem of this section.
Theorem 3.10. If § = S(I') is a locally compact full lattice of groups,

then LLC(S) is isomorphic to the Boolean lattice (P(I),N,U) of all subsets of
I =I'\{a'} with respect to set intersection and union.
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Proof. Corollary 3.8 implies that the partially ordered set
(£,C) = ({LLC(S,1p): J CI'}, Q)

is isomorphic to the partially ordered set (P(I), C) (in the sense that the bijection
J — LLC(S,15): P(I) — L and its inverse are both order-preserving). Thus
(P(I),n,U) is lattice-isomorphic to £ under set intersection N and a “join”
(least upper bound) operation V defined by

LLC(S,1p)V LLC(S,1k) = LLC(S,1 5uk).

We now show that LLC(S) is isomorphic to the lattice £. This clearly
follows if we show that for every subset A C S, there exists J' C I' such that
LLC(S,A) = LLC(S,1p). If A is empty, then by Lemma 3.4 LLC(S,A) =
LMC(S)= LLC(S,1), and we may set J' = I'. Now suppose that A # @ and
let E(S) be the set of all idempotents in . We first establish that E(S)H(1) =
S. Let s € S and define K, = {a € I' : po(s) # 0a}. If K, = I, then
s € H(1), so that s = 1s € E(S)H(1). Otherwise, define ¢, € H(1) as follows:

Pa(ts) =pa(s) f a € K,, pa(ts)=1a if a g K,.

Then s = 1k,t, € E(S)H(1), and it follows that S = E(S)H(1). Lemma 2.2
now implies that § = J{[1x/]: K' C I'}, so that for each a € A thereis a
primed J, C I’ such that a € [1,,]; i.e., LLC(S,a) = LLC(S,1;,). Hence,
from 3.8(3) and 1.2(i) it follows that LLC(S, A) = N{LLC(S,1;5,): a € A} =
LLC(S,1y), where J' =({J.: a € A}. ]

Corollary 3.11.  Let S = S(I') be a full lattice of groups.
(i) If S 1is locally compact or complete metrizable, then E(S) is a complete
set of representatives for the relation po, [s] = sH(1) for all s€ S, and
H(1) is normal. Hence, py is o congruence and the quotient S/po 1is
algebraically isomorphic to E(S).
(i) If S is locally compact and Ep(S)= {1k : K' D J'}, then

£(S) = {Ep(S)HQ1): J' c I'}.

Proof. (i) That E(S) is a complete set of representatives for po is established
in the proof of Theorem 3.10 where we show that £ = LLC(S). Further,
S=U{1r,HQ): J' cI'Y =U{{lr}: J' C I'}, also as in the proof of 3.10.
Since the above unions are disjoint, Lemma 2.2 implies that [15] = 1,H(1).
Now, for each s € § there is J' C I' such that [s] = [15]. This means that
there is u € H(1) such that su = 1. Hence, 1;H(1) C sH(1), implying that
[s] = sH(1).

Furthermore, for each s € §, sH(1) = 1, H(1) for some J' C I'. Hence
there is w € H(1) such that for each u € H(1)

su=lpwy=1pwuw 'w=wuw 1l pw = (wuw )s € H(1)s.

A similar argument implies that us € sH(1) for each u € H(1). Therefore,
sH(1) = H(1)s; i.e., H(1) is normal. The statement about S/po is now clear.
(ii) Suppose J' C K' C I'. Then LLC(S,1y) C LLC(S,1k) and
LLC(S,1xH(1)) = LLC(S,1x). Thus
LLC(S, Ep(S)H(1)) = [ ILC(S,1k+): K' D J'}
= LLC(S,1r)
= LLC(S,U[{1,}]).
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Therefore, Ey(S)H(1) C U[{17}]. On the other hand, if a € U[{1;}], then by
Part (i) a € [1g] = 1xH(1) for some K' C I'. Note that

LLC(S,15) = LLC(S,U[{1»}]) C LLC(S,a) = LLC(S,1x).

Now Corollary 3.8 implies that J' ¢ K', so that ¢ € Ep(S)H(1). Hence, for
each J' C I', U{1p}] = Ex(S)H(1). The ascertion about £(S) now follows
from Theorem 3.10. n

Note that when S(I') is locally compact (see also 3.12 below), Corollary
3.11 identifies the LLC equivalence relation pg with the natural semilattice
congruence on S{I') and it also identifies the LLC lattice with the lattice
E(S(I')) under the canonical idempotent ordering [7].

The assumption of local compactness is not a necessary condition in
Theorem 3.10, as the next example demonstrates.

Example 3.12. (A metric, non-locally compact case.) Let S = J[oe, Sk,
where S, is a complete metrizable group with a zero for each n = 1,2,3,....
Since all metric spaces are homeomorphic to metric spaces of diameter one
[3], we may assume that S, admits a metric dn such that dn(z,y) < 1 for

2,y € Sn, n=1,2,3,.... If wedefine d: S x § > [0,00) by
d(s,t) = Z 2_ndn(3n7tn), Sp = Pn(S), th = Pn(t), n=1, 2,3,...
n=1

then d is a metric for the space § (the familiar “product metric”) and (5,d) isa
complete metric space of diameter one whose metric topology coincides with the
product topology [3]. Although 3.10 cannot be directly applied to this example,
all of the results preceeding 3.10 (except 3.7) do apply if LM C(Sy) contains non-
constant functions for all n > 1. This last condition is, in particular, satisfied by
Lemma 3.7 if for each n > 1, S, is locally compact. Note that even in this latter
case, if S, is non-compact for infinitely many n then S is not locally compact,
although LLC(S) has the same properties stated in 3.10.

In certain cases, it may happen that while distinct, some members of
LLC(S) are isomorphic to each other. This is illustrated in the following exam-
ple.

Example 3.13. Let I be a non-empty set and let T' be a group with a zero.
Then the direct product T! is the space of all functions 2z : I — T'. With the
topology of pointwise convergence TV is a fuli lattice of groups and for each
J C I, the idempotent 1; is just the characteristic function of J. Now suppose
that one of the following restrictions holds:

(i) T is compact;

(ii) T is locally compact and complete metrizable, and I is countable;

(ili) T is locally compact and I is finite;
Then by Theorem 3.10 (for (ii) use Example 3.12 with S, = T for all n)
LLC(T!) is Boolean and lattice isomorphic to (P(I),N,U). Let JJK C I
and |J| = }Kl Let b : I — I be a bijection with b(K) = J, and define
G :TT > T! by @(z)=z0b, z € T1. Then 8 is a topological automorphism
with 83(1) = 1k . Hence Corollary 1.9 implies that LLC(T?,1;) is isometrically
#-isomorphic to LLC(T?,1x). Thus if LLC(T!,1;),LLC(T!,1x) € LLC(TY)
with |J| # |K|, then by identifying isomorphic copies we may assume that
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J C K, or equivalently (3.8), that LLC(T7,1;) ¢ LLC(T,1k). It follows that
LLC(TT) is linear up to isomorphisms. We note here that for compact T, TT
is also compact. Hence in case (1) above, instead of 1.9 it would be easier to use
Corollary 3.16 below.

We close this section by characterizing the set of all continuous (I'\J')-
constant functions (hence also LLC(S,1r) ) in terms of C(1,8), J' C I'.
As remarked in Example 3.13, these characterizations can be helpful in settling
isomorphism questions about LLC algebras. Let I be a non-empty set and let
{Se : @ € I} be a family of topological spaces. For each J C I, J # @,1I,
let Sy = [[{S«: a € J}, and let p;j : S — S; be the projection of S
onto Sy. Then the dual map p% : C(Sy) v C(S) is a linear isometry and a
conjugate-preserving monomorphism, as may be verified directly. We also extend
Definition 3.5 to continuous functions defined on topological spaces: If K # @, I,
then f € C(S) is K-constant on the product S, if f(s) = f(¢) for every pair
s,t € S satisfying pp\x(s) = pr\x(1).

Lemma 3.14. Let S =[[{Ss: « € I} be a direct product of topological spaces
So, and let J C I, J# @,I. Then p5C(Ss) is the set of all (I\J)-constant
functions in C(S).

Proof. For each g € C(S;), pjg = g o ps is continuous on S and (I\J)-
constant. Conversely, let f be an (I\J)-constant function in C(S). Let ¢
be a fixed element of S;\; and for each s € Sy, define z, € § as follows:
pi(zs) = s, pny(zs) = t. Now define h(s) = f(z,), s € S;. Then h is uniquely
defined by f and it is easily verified that A € C(S;). Furthermore, due to I\J-
constancy, p5h = f, and the lemma follows. [ ]

As a consequence of Lemma 3.14, we may assert that the set of all (I\J)-
constant functions in C(S) s isometrically *-isomorphic to C(S;). In the next
corollary we resume the use of Notations 3.2.

Corollary 3.15. Let S = S(I') be a locally compact or complete metrizable
full lattice of groups, and let J' C I', J' # I'. Then there ezists a surjective
continuous homomorphism ©: S+ 1585 such that

LLC(S,15) = n*C(15S) N LMC(S).

Proof. From Theorem 3.6 and Lemma 3.14 we may infer that LLC(S,1r) =
5 C(Sp)NLMC(S). Also 1pS is topologically isomorphic to Sy under the
obvious identification of elements which we denote by 85 : Sy +— 1S (0 is the
mapping that inserts all the zero coordinates outside J'). Define n =65 o py,
and note that 7 has the stated properties. ]

Corollary 3.16. Let S = S(I') be a compact full lattice of groups, and let
J',K' be proper subsets of I'.

(i) If the ideal 152S s topologically isomorphic to the ideal 1xS, then

LLC(S,1) 1is isometrically *-isomorphic to LLC(S,1x").

(1) C(S)li, s = LLC(8,1p)1,,s =C(ArS).
Proof. (i) Since LMC(S) = C(S), Corollary 3.15 implies that LLC(5,1L) =
73C(11S), L = J',K', with np, : § — 115 as given in 3.15. Hence, if
T:1p8 + 15 S is a topological isomorphism, then

LLC(S, 1]1) = 7I'3, T*W;(TILLC(S, 11(')
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and Part (i) follows.

(ii) Note that if = is the mapping in 3.15, then n(s) = s for every

s € 155. Hence for every g € C(].JIS), (’rr*g)ll_l,s = (goaj; °PJ')[1,,S =g,
and Corollary 3.15 implies that

C(S)h,s CC(LrS) = LLC(S,15)l1 s € C(S)lis-

References

Berglund, J. F., H. D. Junghenn, and P. Milnes, “Analysis on Semi-
groups: Function Spaces, Compactifications, Representations”, Canadian
Mathematical Society Series of Monographs and Advanced Texts, John
Wiley and Sons, New York, 1989.

Junghenn, H. D., Eztensions of continuous functions on dense subsemi-
groups, Illinois J. Math. 27 (1983), 421-435.

Kelley, J. L., “General Topology”, Van Nostrand, New York, 1955.

Lawson, J. D., Joint continuity in semitopological semigroups, Illinois J.
Math. 18 (1974), 275-285.

Milnes, P., and J. S. Pym, Counterezample in the theory of continuous
functions on topological groups, Pacific J. Math. 66 (1976), 205-209.

Milnes, P., and J. S. Pym, Function spaces on semitopological semi-
groups, Semigroup Forum 19 (1980), 347-354.

Petrich, M., “Introduction to Semigroups”, Charles E. Merrill, Colum-
bus, Ohio, 1973.

Sedaghat, H., “New Constructions in Semigroup Compactification The-
ory”, Dissertation, George Washington University, Washington DC, 1990.

Department of Mathematical Sciences
Virginia Commonwealth University
Richmond, VA 23284-2014

Received November 6, 1991
and in final form July 21, 1992

321



